Home > Publications database > Beware of entropy phase transition! How to make quantum denoising successful? > print |
001 | 916699 | ||
005 | 20230123101906.0 | ||
037 | _ | _ | |a FZJ-2023-00039 |
100 | 1 | _ | |a Pazem, Josephine |0 P:(DE-Juel1)188287 |b 0 |e Corresponding author |u fzj |
111 | 2 | _ | |a APS March Meeting 2022 |c Chicago |d 2022-03-14 - 2022-03-18 |w USA |
245 | _ | _ | |a Beware of entropy phase transition! How to make quantum denoising successful? |
260 | _ | _ | |c 2022 |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a CONFERENCE_POSTER |2 ORCID |
336 | 7 | _ | |a Output Types/Conference Poster |2 DataCite |
336 | 7 | _ | |a Poster |b poster |m poster |0 PUB:(DE-HGF)24 |s 1672815764_11107 |2 PUB:(DE-HGF) |x Invited |
520 | _ | _ | |a Quantum autoencoders can help to generate denoised entanglement on a noisy neural network. However noise outweighs the process if it gets too strong. [1]We show that the flow of Rényi entropy in a subnet can perform as a measure whose phase transition determines denoising success or failure. Moreover, we rely on the study to implement a deformation of the network that results in improved tolerance against heavier noises.References:[1] D. Bondarenko and P. Feldmann, “Quantum autoencoders to denoise quantum data,” Phys. Rev. Lett., vol. 124, no. 13, p. 130502, 2020. |
536 | _ | _ | |a 5224 - Quantum Networking (POF4-522) |0 G:(DE-HGF)POF4-5224 |c POF4-522 |f POF IV |x 0 |
700 | 1 | _ | |a Ansari, Mohammad |0 P:(DE-Juel1)171686 |b 1 |u fzj |
909 | C | O | |o oai:juser.fz-juelich.de:916699 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)188287 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)171686 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-522 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Computing |9 G:(DE-HGF)POF4-5224 |x 0 |
914 | 1 | _ | |y 2022 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-2-20110106 |k PGI-2 |l Theoretische Nanoelektronik |x 0 |
980 | _ | _ | |a poster |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-2-20110106 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|