000916714 001__ 916714
000916714 005__ 20230123101907.0
000916714 037__ $$aFZJ-2023-00054
000916714 1001_ $$0P:(DE-Juel1)176178$$aXu, Xuexin$$b0$$eCorresponding author$$ufzj
000916714 1112_ $$aAPS March Meeting 2021$$conline$$d2021-03-15 - 2021-03-21$$wUSA
000916714 245__ $$aZZ freedom in two qubit gates
000916714 260__ $$c2021
000916714 3367_ $$033$$2EndNote$$aConference Paper
000916714 3367_ $$2DataCite$$aOther
000916714 3367_ $$2BibTeX$$aINPROCEEDINGS
000916714 3367_ $$2DRIVER$$aconferenceObject
000916714 3367_ $$2ORCID$$aLECTURE_SPEECH
000916714 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1672825042_10869$$xInvited
000916714 520__ $$aAchieving high fidelity two qubit gates requires elimination of unwanted interactions among qubits. Weakly anharmonic superconducting qubits in the absence of external driving exhibit an always-on phase error mainly due to a sub-MHz repulsion between computational and non-computational energy levels, the so-called static ZZ interaction. Here we present that in general there are two theoretical ways for eliminating fundamental ZZ error: 1) static ZZ freedom by combining qubits with opposite sign anharmonicity 2) dynamic ZZ freedom in driven qubits with a microwave pulse, which can be universally realized by combining qubits with any anharmonicity signs. Scaling up the number of such qubits can mitigate high fidelity gate operation.Reference1. Xuexin, Xu, and M. H. Ansari. "ZZ freedom in two qubit gates." arXiv:2009.00485 (2020).2. Ku, Jaseung, et al. "Suppression of Unwanted ZZ Interactions in a Hybrid Two-Qubit System."      arXiv:2003.02775 (2020)
000916714 536__ $$0G:(DE-HGF)POF4-5224$$a5224 - Quantum Networking (POF4-522)$$cPOF4-522$$fPOF IV$$x0
000916714 7001_ $$0P:(DE-Juel1)171686$$aAnsari, Mohammad$$b1$$ufzj
000916714 909CO $$ooai:juser.fz-juelich.de:916714$$pVDB
000916714 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176178$$aForschungszentrum Jülich$$b0$$kFZJ
000916714 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171686$$aForschungszentrum Jülich$$b1$$kFZJ
000916714 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5224$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
000916714 9141_ $$y2022
000916714 920__ $$lyes
000916714 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000916714 980__ $$aconf
000916714 980__ $$aVDB
000916714 980__ $$aI:(DE-Juel1)PGI-2-20110106
000916714 980__ $$aUNRESTRICTED