000916714 001__ 916714 000916714 005__ 20230123101907.0 000916714 037__ $$aFZJ-2023-00054 000916714 1001_ $$0P:(DE-Juel1)176178$$aXu, Xuexin$$b0$$eCorresponding author$$ufzj 000916714 1112_ $$aAPS March Meeting 2021$$conline$$d2021-03-15 - 2021-03-21$$wUSA 000916714 245__ $$aZZ freedom in two qubit gates 000916714 260__ $$c2021 000916714 3367_ $$033$$2EndNote$$aConference Paper 000916714 3367_ $$2DataCite$$aOther 000916714 3367_ $$2BibTeX$$aINPROCEEDINGS 000916714 3367_ $$2DRIVER$$aconferenceObject 000916714 3367_ $$2ORCID$$aLECTURE_SPEECH 000916714 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1672825042_10869$$xInvited 000916714 520__ $$aAchieving high fidelity two qubit gates requires elimination of unwanted interactions among qubits. Weakly anharmonic superconducting qubits in the absence of external driving exhibit an always-on phase error mainly due to a sub-MHz repulsion between computational and non-computational energy levels, the so-called static ZZ interaction. Here we present that in general there are two theoretical ways for eliminating fundamental ZZ error: 1) static ZZ freedom by combining qubits with opposite sign anharmonicity 2) dynamic ZZ freedom in driven qubits with a microwave pulse, which can be universally realized by combining qubits with any anharmonicity signs. Scaling up the number of such qubits can mitigate high fidelity gate operation.Reference1. Xuexin, Xu, and M. H. Ansari. "ZZ freedom in two qubit gates." arXiv:2009.00485 (2020).2. Ku, Jaseung, et al. "Suppression of Unwanted ZZ Interactions in a Hybrid Two-Qubit System." arXiv:2003.02775 (2020) 000916714 536__ $$0G:(DE-HGF)POF4-5224$$a5224 - Quantum Networking (POF4-522)$$cPOF4-522$$fPOF IV$$x0 000916714 7001_ $$0P:(DE-Juel1)171686$$aAnsari, Mohammad$$b1$$ufzj 000916714 909CO $$ooai:juser.fz-juelich.de:916714$$pVDB 000916714 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176178$$aForschungszentrum Jülich$$b0$$kFZJ 000916714 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171686$$aForschungszentrum Jülich$$b1$$kFZJ 000916714 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5224$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0 000916714 9141_ $$y2022 000916714 920__ $$lyes 000916714 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0 000916714 980__ $$aconf 000916714 980__ $$aVDB 000916714 980__ $$aI:(DE-Juel1)PGI-2-20110106 000916714 980__ $$aUNRESTRICTED