001     916714
005     20230123101907.0
037 _ _ |a FZJ-2023-00054
100 1 _ |a Xu, Xuexin
|0 P:(DE-Juel1)176178
|b 0
|e Corresponding author
|u fzj
111 2 _ |a APS March Meeting 2021
|c online
|d 2021-03-15 - 2021-03-21
|w USA
245 _ _ |a ZZ freedom in two qubit gates
260 _ _ |c 2021
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1672825042_10869
|2 PUB:(DE-HGF)
|x Invited
520 _ _ |a Achieving high fidelity two qubit gates requires elimination of unwanted interactions among qubits. Weakly anharmonic superconducting qubits in the absence of external driving exhibit an always-on phase error mainly due to a sub-MHz repulsion between computational and non-computational energy levels, the so-called static ZZ interaction. Here we present that in general there are two theoretical ways for eliminating fundamental ZZ error: 1) static ZZ freedom by combining qubits with opposite sign anharmonicity 2) dynamic ZZ freedom in driven qubits with a microwave pulse, which can be universally realized by combining qubits with any anharmonicity signs. Scaling up the number of such qubits can mitigate high fidelity gate operation.Reference1. Xuexin, Xu, and M. H. Ansari. "ZZ freedom in two qubit gates." arXiv:2009.00485 (2020).2. Ku, Jaseung, et al. "Suppression of Unwanted ZZ Interactions in a Hybrid Two-Qubit System." arXiv:2003.02775 (2020)
536 _ _ |a 5224 - Quantum Networking (POF4-522)
|0 G:(DE-HGF)POF4-5224
|c POF4-522
|f POF IV
|x 0
700 1 _ |a Ansari, Mohammad
|0 P:(DE-Juel1)171686
|b 1
|u fzj
909 C O |o oai:juser.fz-juelich.de:916714
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176178
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171686
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5224
|x 0
914 1 _ |y 2022
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21