000916715 001__ 916715 000916715 005__ 20230123101907.0 000916715 037__ $$aFZJ-2023-00055 000916715 1001_ $$0P:(DE-Juel1)176178$$aXu, Xuexin$$b0$$eCorresponding author$$ufzj 000916715 1112_ $$aWE-Heraeus-Seminar / Hybrid Solid State Quantum Circuits, Sensors, and Metrology$$cOnline-Seminar$$d2021-12-13 - 2021-12-16$$wGermany 000916715 245__ $$aMitigating parasitic interactions in superconducting circuits 000916715 260__ $$c2021 000916715 3367_ $$033$$2EndNote$$aConference Paper 000916715 3367_ $$2DataCite$$aOther 000916715 3367_ $$2BibTeX$$aINPROCEEDINGS 000916715 3367_ $$2DRIVER$$aconferenceObject 000916715 3367_ $$2ORCID$$aLECTURE_SPEECH 000916715 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1672815779_11107$$xInvited 000916715 520__ $$aImplementation of high-performance two-qubit gates is a key factor for scalable quantum computation. However, the state-of-the-art superconducting two-qubit gates are yet far from being perfect due to the parasitic ZZ coupling. In this poster, we introduce a general theory to evaluate the “static” ZZ interaction between seemingly idle qubits [1] as well as the “dynamical” ZZ interaction between driving entangled qubits, and find the characteristics of both static and dynamical ZZ freedoms [2]. Moreover, we demonstrate the two freedoms can be realized in one circuit with a tunable coupler so as to eliminate ZZ interaction throughout gate operations [3]. Our theory shows that using these methods the fidelity of a CR gate is able to achieve the coherence limit.References[1] J. Ku, X. Xu, M. Brink, D. C. McKay, J. B. Hertzberg, M. H. Ansari, B. L. T Plourde, Suppression of unwanted ZZ interactions in a hybrid two-qubit system. Physical Review Letters 125, 200504 (2020)[2] X. Xu and M. H. Ansari, ZZ freedom in two-qubit gates. Physical Review Applied 15, 064074 (2021)[3] X. Xu and M. H. Ansari, Parasitic free gates. In preparation 000916715 536__ $$0G:(DE-HGF)POF4-5224$$a5224 - Quantum Networking (POF4-522)$$cPOF4-522$$fPOF IV$$x0 000916715 7001_ $$0P:(DE-Juel1)171686$$aAnsari, Mohammad$$b1$$ufzj 000916715 909CO $$ooai:juser.fz-juelich.de:916715$$pVDB 000916715 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176178$$aForschungszentrum Jülich$$b0$$kFZJ 000916715 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171686$$aForschungszentrum Jülich$$b1$$kFZJ 000916715 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5224$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0 000916715 9141_ $$y2022 000916715 920__ $$lyes 000916715 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0 000916715 980__ $$aconf 000916715 980__ $$aVDB 000916715 980__ $$aI:(DE-Juel1)PGI-2-20110106 000916715 980__ $$aUNRESTRICTED