000916716 001__ 916716
000916716 005__ 20230123101907.0
000916716 037__ $$aFZJ-2023-00056
000916716 1001_ $$0P:(DE-Juel1)176178$$aXu, Xuexin$$b0$$eCorresponding author$$ufzj
000916716 1112_ $$aAPS March Meeting$$cChicago$$d2022-03-14 - 2022-03-18$$wUSA
000916716 245__ $$aParasitic free gate
000916716 260__ $$c2022
000916716 3367_ $$033$$2EndNote$$aConference Paper
000916716 3367_ $$2DataCite$$aOther
000916716 3367_ $$2BibTeX$$aINPROCEEDINGS
000916716 3367_ $$2DRIVER$$aconferenceObject
000916716 3367_ $$2ORCID$$aLECTURE_SPEECH
000916716 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1672817222_11107$$xInvited
000916716 520__ $$aImplementation of high-performance two-qubit gates is a key factor for scalable quantum computation. However, the state-of-the-art superconducting two-qubit gates are yet far from being perfect due to the parasitic ZZ coupling. In this paper, we propose a parasitic free (PF) gate to suppress such unwanted interaction in use of the tunable coupler. The gate is operated in two modes: in idle mode the coupler frequency is tuned such that the two qubits are effectively decoupled; in driven mode the coupler frequency is tuned so as to result in a nonzero static ZZ interaction, which later can be cancelled by the dynamical part. Our theory shows that using this method the fidelity of a CR gate is able to achieve the coherence limit.
000916716 536__ $$0G:(DE-HGF)POF4-5224$$a5224 - Quantum Networking (POF4-522)$$cPOF4-522$$fPOF IV$$x0
000916716 7001_ $$0P:(DE-Juel1)171686$$aAnsari, Mohammad$$b1$$ufzj
000916716 909CO $$ooai:juser.fz-juelich.de:916716$$pVDB
000916716 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176178$$aForschungszentrum Jülich$$b0$$kFZJ
000916716 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171686$$aForschungszentrum Jülich$$b1$$kFZJ
000916716 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5224$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
000916716 9141_ $$y2022
000916716 920__ $$lyes
000916716 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000916716 980__ $$aconf
000916716 980__ $$aVDB
000916716 980__ $$aI:(DE-Juel1)PGI-2-20110106
000916716 980__ $$aUNRESTRICTED