001     916725
005     20250701125912.0
024 7 _ |a 10.7566/JPSCP.37.021209
|2 doi
024 7 _ |a 2128/33360
|2 Handle
037 _ _ |a FZJ-2023-00065
041 _ _ |a English
100 1 _ |a Kannis, Chrysovalantis S.
|0 P:(DE-Juel1)178627
|b 0
|e Corresponding author
111 2 _ |a 24th International Spin Symposium (SPIN2021)
|g SPIN2021
|c Matsue
|d 2021-10-18 - 2021-10-22
|w Japan (Hybrid)
245 _ _ |a New Application of a Sona Transition Unit: Observation of Direct Transitions between Quantum States with Energy Differences of 10 neV and Below
260 _ _ |c 2022
|b Journal of the Physical Society of Japan
295 1 0 |a Proceedings of the 24th International Spin Symposium (SPIN2021) - Journal of the Physical Society of Japan, 2022. - ISBN 4-89027-150-3 - doi:10.7566/JPSCP.37.021209
300 _ _ |a 021209
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1682678515_9654
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
520 _ _ |a For more than 50 years Sona transition units have been used at polarized sources to exchange the occupation numbers between “pure” hyperfine substates. For instance, hydrogen atoms in the hyperfine substate |F=1,mF=+1⟩ are transferred into |F=1,mF=−1⟩when these atoms are passing a static magnetic field gradient between two opposing solenoidal magnetic fields. Thus, the magnetic field direction, i.e., the quantization axis, is rotated faster than the spin orientation can follow due to the Larmor precession.In parallel, the atoms traveling through the zero crossing of the static magnetic field experience in their rest frame an oscillating magnetic field. This oscillation is equivalent to an external radio frequency field of frequency f=vatom/λthat can induce transitions between hyperfine substates with the energy difference ΔE=n⋅h⋅f, where n is an integer. Here, the distance between the opposite coils determines the wavelength λ, thus the beam velocity vatom can be used to manipulate the frequency f to induce transitions between quantum states with energy differences of 10 neV and below. These tiny energy differences can be found between hyperfine substates of hydrogen atoms at low magnetic fields in the Breit–Rabi diagram. Here first measurements, their interpretation and possible applications are presented.
536 _ _ |a 621 - Accelerator Research and Development (POF4-621)
|0 G:(DE-HGF)POF4-621
|c POF4-621
|f POF IV
|x 0
536 _ _ |a 612 - Cosmic Matter in the Laboratory (POF4-612)
|0 G:(DE-HGF)POF4-612
|c POF4-612
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef Conference
650 2 7 |a Nuclear Physics
|0 V:(DE-MLZ)SciArea-200
|2 V:(DE-HGF)
|x 0
650 1 7 |a Nuclei and Particles
|0 V:(DE-MLZ)GC-2001-2016
|2 V:(DE-HGF)
|x 0
700 1 _ |a Engels, Ralf W.
|0 P:(DE-Juel1)131141
|b 1
700 1 _ |a Hanhart, Christoph
|0 P:(DE-Juel1)131182
|b 2
|u fzj
700 1 _ |a Soltner, Helmut
|0 P:(DE-Juel1)133754
|b 3
|u fzj
700 1 _ |a Huxold, Lukas
|b 4
700 1 _ |a Grigoryev, Kirill
|0 P:(DE-Juel1)131170
|b 5
|u fzj
700 1 _ |a Lehrach, Andreas
|0 P:(DE-Juel1)131234
|b 6
|u fzj
700 1 _ |a Büscher, Markus
|0 P:(DE-Juel1)131108
|b 7
|u fzj
700 1 _ |a Sefzick, Thomas
|0 P:(DE-Juel1)131326
|b 8
|u fzj
773 _ _ |a 10.7566/JPSCP.37.021209
856 4 _ |u https://juser.fz-juelich.de/record/916725/files/jpscp.37.021209.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:916725
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)178627
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131141
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131182
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)133754
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131170
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)131234
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131108
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)131326
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF4-620
|0 G:(DE-HGF)POF4-621
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Accelerator Research and Development
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and the Universe
|1 G:(DE-HGF)POF4-610
|0 G:(DE-HGF)POF4-612
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Cosmic Matter in the Laboratory
|x 1
914 1 _ |y 2022
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IKP-2-20111104
|k IKP-2
|l Experimentelle Hadrondynamik
|x 0
920 1 _ |0 I:(DE-Juel1)IKP-4-20111104
|k IKP-4
|l Kernphysikalische Großgeräte
|x 1
920 1 _ |0 I:(DE-Juel1)PGI-6-20110106
|k PGI-6
|l Elektronische Eigenschaften
|x 2
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 3
920 1 _ |0 I:(DE-Juel1)ZEA-1-20090406
|k ZEA-1
|l Zentralinstitut für Technologie
|x 4
980 1 _ |a FullTexts
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)IKP-2-20111104
980 _ _ |a I:(DE-Juel1)IKP-4-20111104
980 _ _ |a I:(DE-Juel1)PGI-6-20110106
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
980 _ _ |a I:(DE-Juel1)ZEA-1-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ITE-20250108
981 _ _ |a I:(DE-Juel1)PGI-4-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21