001     916745
005     20231027114350.0
024 7 _ |a 10.1109/JSTARS.2022.3231380
|2 doi
024 7 _ |a 1939-1404
|2 ISSN
024 7 _ |a 2151-1535
|2 ISSN
024 7 _ |a 2128/33664
|2 Handle
024 7 _ |a 36644656
|2 pmid
024 7 _ |a WOS:000981757000002
|2 WOS
037 _ _ |a FZJ-2023-00073
041 _ _ |a English
082 _ _ |a 520
100 1 _ |a Morata, Miguel
|0 0000-0002-0537-6803
|b 0
|e Corresponding author
245 _ _ |a Neural Network Emulation of Synthetic Hyperspectral Sentinel-2-like Imagery with Uncertainty
260 _ _ |a New York, NY
|c 2023
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1673958744_27886
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Hyperspectral satellite imagery provides highly-resolved spectral information for large areas and can provide vital information. However, only a few imaging spectrometer missions are currently in operation. Aiming to generate synthetic satellite-based hyperspectral imagery potentially covering any region, we explored the possibility of applying statistical learning, i.e. emulation. Based on the relationship of a Sentinel-2 (S2) scene and a hyperspectral HyPlant airborne image, this work demonstrates the possibility to emulate a hyperspectral S2-like image. We tested the role of different machine learning regression algorithms (MLRA) and varied the image-extracted training dataset size. We found superior performance of Neural Network (NN) as opposed to the other algorithms when trained with large datasets (up to 100'000 samples). The developed emulator was then applied to the L2A (bottom-of-atmosphere reflectance) S2 subset, and the obtained S2-like hyperspectral reflectance scene was evaluated. The validation of emulated against reference spectra demonstrated the potential of the technique. R2 values between 0.75-0.9 and NRMSE between 2-5% across the full 402-2356 nm range were obtained. Moreover, epistemic uncertainty is obtained using the dropout technique, revealing spatial fidelity of the emulated scene. We obtained highest SD values of 0.05 (CV of 8%) in clouds and values below 0.01 (CV of 7%) in vegetation land covers. Finally, the emulator was applied to an entire S2 tile (5490x5490 pixels) to generate a hyperspectral reflectance datacube with the texture of S2 (60Gb, at a speed of 0.14sec/10000pixels). As the emulator can convert any S2 tile into a hyperspectral image, such scenes give perspectives how future satellite imaging spectroscopy will look like.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Siegmann, Bastian
|0 P:(DE-Juel1)172711
|b 1
700 1 _ |a Perez-Suay, Adrian
|0 0000-0002-8258-4454
|b 2
700 1 _ |a Garcia-Soria, Jose Luis
|0 0000-0002-7693-0891
|b 3
700 1 _ |a Rivera-Caicedo, Juan Pablo
|0 0000-0003-3188-1448
|b 4
700 1 _ |a Verrelst, Jochem
|0 0000-0002-6313-2081
|b 5
773 _ _ |a 10.1109/JSTARS.2022.3231380
|g p. 1 - 11
|0 PERI:(DE-600)2457423-5
|p 762-772
|t IEEE journal of selected topics in applied earth observations and remote sensing
|v 16
|y 2023
|x 1939-1404
856 4 _ |u https://juser.fz-juelich.de/record/916745/files/Neural_Network_Emulation_of_Synthetic_Hyperspectral_Sentinel-2-Like_Imagery_With_Uncertainty.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:916745
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 0000-0002-0537-6803
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)172711
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 0000-0002-8258-4454
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 0000-0002-7693-0891
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 0000-0003-3188-1448
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 0000-0002-6313-2081
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-17
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-17
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-17
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T11:24:31Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T11:24:31Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T11:24:31Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-25
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE J-STARS : 2022
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-25
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b IEEE J-STARS : 2022
|d 2023-10-25
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21