
GPU-accelerated simulation
of guided quantum walks

by

Sebastian Schulz

Master’s thesis in Physics

submitted to the

Faculty of Mathematics, Computer Science and Natural Science
at the RWTH Aachen

in October 2022

prepared at the

Jülich Supercomputing Centre
Forschungszentrum Jülich

under supervision of

Prof. Dr. Kristel Michielsen
Prof. Dr. Markus Müller

Contents

Introduction 1

1. Simulation of ideal quantum computing 3
1.1. Ideal quantum computing . 4

1.1.1. Quantum states . 4
1.1.2. Quantum gates . 6
1.1.3. Quantum measurements . 7

1.2. Quantum circuit simulation . 8
1.2.1. Simulation techniques . 8
1.2.2. Programming framework . 10

1.2.2.1. CUDA platform . 11
1.2.2.2. Hardware limitations . 12

1.2.3. Implementation of SEQCS . 12
1.2.3.1. Multi-node computation . 14
1.2.3.2. Single-Node computation . 17
1.2.3.3. Gate implementations . 20

1.3. Benchmarks . 25
1.3.1. MPI-communication scheme . 26
1.3.2. Shared memory . 28
1.3.3. Combined gate execution . 30

1.3.3.1. Single qubit diagonal gates . 30
1.3.3.2. Single qubit non-diagonal gates 32

1.3.4. Quantum algorithms . 35

2. Quantum optimization algorithms 37
2.1. Combinatorial optimization problems . 38

2.1.1. Exact-Cover problems . 40
2.1.2. 2-SAT problems . 42

2.2. Quantum optimization algorithms . 43
2.2.1. Quantum annealing . 44
2.2.2. Quantum approximate optimization algorithm 45
2.2.3. Approximate quantum annealing . 47
2.2.4. Quantum walk . 48

2.3. Guided quantum walk . 51
2.3.1. Movement on directed graphs . 51
2.3.2. Controlling the walker’s movement . 54
2.3.3. Heuristic model . 60
2.3.4. Dynamics of the HGQW model . 66

i

Contents

2.3.5. Adjustments to the HGQW model . 69
2.4. Performance analysis . 77

2.4.1. Performance of the HGQW model . 79
2.4.2. Performance of the HGQW-A model . 82
2.4.3. Comparison of the GQW, the AQA and the QAOA 85

2.4.3.1. Performance on exact cover problems 86
2.4.3.2. Performance on 2-SAT problems 90

2.4.4. Hybrid algorithms . 93

Conclusion 98

Bibliography 103

Appendix 111
A. Implemented gate operations . 111
B. Quantum circuits . 113

B.1. Quantum approximate optimization algorithm 113
B.2. Quantum Fourier transformation . 117
B.3. Quantum adder . 118

C. GPU architecture . 119
D. SEQCS program code . 121
E. Algorithms . 122

E.1. Insertion of qubit swaps . 122
E.2. MPI communication scheme . 123
E.3. Creation of gate-clusters . 124
E.4. Formation of gate-groups . 126
E.5. Out-of-order gate execution . 127

F. Conversion between Ising and QUBO formulation 130
G. Exact cover problems . 131

G.1. Exact cover generator . 131
H. 2-SAT problems . 132
I. Distribution of interaction coefficients . 133
J. Additional performance results . 134

J.1. GQW results . 134
J.2. AQA results . 137
J.3. QAOA results . 139

Acknowledgments 141

ii

List of Figures

1.1. Bloch sphere . 5
1.2. Execution sequence for the simulation of a quantum circuit 14
1.3. Benchmark: MPI-communication (TMP I and TGates normalized) 26
1.4. Benchmark: MPI-communication (consecutive global-local qubit exchanges) . 28
1.5. Benchmark: shared memory . 29
1.6. Benchmark: Z, S, T and Rz gate . 31
1.7. Benchmark: H, +X, +Y , X and Y gate . 33
1.8. Benchmark: out-of-order execution scheme . 34
1.9. Benchmark: quantum adder, QFT, QAOA . 36

2.1. Degeneracy of energy levels (EC_16_1) . 41
2.2. Degeneracy of energy levels (2SAT_16_1) . 43
2.3. General QAOA circuit . 47
2.4. Hypercube graph structure . 50
2.5. Hypercube graph structure (energy adjusted) . 54
2.6. Initial phase change per iteration . 59
2.7. Distribution of energy differences for EC_16_1 63
2.8. Sets of variational parameters obtained by HGQW for EC_16_1 65
2.8. Dynamics of the HGQW and CQW model . 67
2.9. Dynamics of the HGQW model for 2SAT_16_1 70
2.10. Regular and inverse hypercube graph structure (energy adjusted) 73
2.10. Sets of variational parameters obtained by the HGQW-A model for 2SAT_16_1 76
2.11. Dynamics of the HGQW-A model for 2SAT_16_1 77
2.12. Performance analysis of the HGQW model (Ar evaluation) 81
2.12. Performance analysis of the HGQW-A model (Ar evaluation) 85
2.13. Comparison of the GQW, the AQA and the QAOA on exact cover problems

(Ar evaluation): Pgs(p) . 87
2.14. Comparison of the GQW, the AQA and the QAOA on exact cover problems

(Ar evaluation): Pgs(N) . 89
2.15. Comparison of the GQW, the AQA and the QAOA on 2-SAT problems (Ar

evaluation): Pgs(p) . 91
2.16. Comparison of the GQW, the AQA and the QAOA on 2-SAT problems (Ar

evaluation): Pgs(N) . 92
2.17. Comparison of the hybrid GQW and the hybrid AQA (Ar evaluation): dβ,γ . . 95
2.18. Initial and fine-tuned variational parameters by the hybrid GQW and the

hybrid AQA strategy for EC_16_1 . 96
2.19. Initial and fine-tuned variational parameters by the hybrid GQW and the

hybrid AQA strategy for 2SAT_16_1 . 97

iii

List of Figures

B.1. QAOA circuit . 113
B.2. QAOA circuit: ÛC (γp) . 114
B.3. QAOA circuit: SEQCS gate-execution scheme 116
B.4. QFT circuit . 117
B.5. Adder circuit . 118
C.6. GPU architecture (Ampere) . 119
C.7. Streaming Multiprocessor architecture (Ampere) 120
E.8. Caching of state amplitudes . 125
I.9. Distribution of the interaction coefficients Kl (tD) 133
J.10. 3D-plot of the HGQW model performance results (Ar evaluation) 134
J.11. 3D-plot of the HGQW-A model performance results (Ar evaluation) 135
J.12. Performance analysis of the HGQW model and the HGQW-A model (Pgs

evaluation) . 136
J.13. Performance of the AQA on the set of exact cover problems (Ar evaluation) . 137
J.14. Performance of the AQA on the set of 2-SAT problems (Ar evaluation) 138
J.15. Performance of the QAOA on the set of exact cover problems (Ar evaluation) 139
J.16. Performance of the QAOA on the set of 2-SAT problems (Ar evaluation) . . . 140

iv

Nomenclature

List of abbreviations
2SAT_N_I Label of the 2-SAT problem instance I featuring N qubits.

AQA Approximate quantum annealing.

AQC Adiabatic quantum computing.

Cluster space Closed 2NC dimensional subspace of the state space in which
a gate-cluster is operating.

Constant memory Read-only global memory (8 KB cached into L1-cache; ≈ 10
cycles latency).

CUDA block Collection of multiple warps mapped onto one SM.

CUDA thread Smallest unit of computation on a GPU that is mapped onto
one streaming processor.

CUDA warp Fixed collection of 32 threads that operate in a SIMT fash-
ion.

CUDA Compute Unified Device Architecture.

Device Environment of the GPU and its memory (global memory).

EC_N_I Label of the exact cover problem instance I featuring N
qubits.

Global memory Main GPU memory (40 GB; 400 − 800 cycles latency).

Global qubit A qubit that is distributed among the memory spaces of two
GPUs.

GQW Guided quantum walk.

HGQW Heuristic model which is used to apply the GQW to exact
cover instances. The model is tuned in an outter classical
loop using a set of optimization parameters λ.

HGQW-A Heuristic model which is used to apply the GQW to 2-SAT
instances. The model is tuned in an outter classical loop
using a set of optimization parameters λ.

v

Nomenclature

Host Environment of the CPU and its memory (RAM).

JUQCS-G GPU-accelerated version of the Jülich universal quantum
computer simulator.

Local qubit A qubit that resides in the memory space of one GPU.

MPI Message Passing Interface.

NISQ device Noisy Intermediate Scale Quantum device.

NP Nondeterministic polynomial. This complexity class includes
all problems their solution can be verified with polynomial
ressources.

NP-complete Nondeterministic polynomial complete. This complexity class
includes all problems of NP that can be used to simulate all
other problems in NP with polyonomial ressources.

QAOA Quantum approximate optimization algorithm.

QFT Quantum Fourier transformation.

QUBO Quadratic unconstrained binary optimization problem.

QW Quantum walk.

SEQCS Sebastian quantum circuit simulator. A high-performance
GPU-accelerated classical simulator of large scale quantum
circuits.

Shared memory Block-private self-managed L1-cache (48 KB per block; ≈ 10
cycles latency).

SM Streaming Multiprocessor on a GPU.

State space 2N dimensional complex Hilbert space of N qubits.

Target space Closed subspace of the state space in which a quantum gate
is operating.

List of symbols
&, ∼, ∧, ∣, <<i, >>i Bitwise operators: AND, NOT, XOR, OR, left and right

shift by i bits.

Ar = ⟨Ψ∣ĤC ∣Ψ⟩
max
Zi∈Z

C(Zi) Approximation ratio, corresponding to the normalized en-

ergy expectation value of the cost Hamiltonian ĤC .

B = [b15 . . . b0]2 15 bit integer denoting the CUDA blockID, hence the index
of a block within a CUDA grid.

β = {β0, . . . , βp−1} Set of spread coefficients that control the time evolution
under the mixing Hamiltonian ĤM .

vi

Nomenclature

∣β,γ⟩ =
p

∏
k=1

ÛM (βk) ÛC (γk) ∣+⟩ Variational quantum state after p iterations of phase seper-

ation ÛC and mixing ÛM time evolutions.

β (i,λ) Sampling function of the spread coefficients β used by the
HGQW model and the HGQW-A model. The function uses
a constant distribution for β tuned by the optimization pa-
rameters λ.

C = [cNC−9 . . . c0]2 Integer that counts through the amplitudes assigned to a
thread. Note that C is traversed using the inverse-gray code.

CQUBO
0 , C Ising

0 Constant shifts of the cost function in the QUBO and Ising
formulation, respectively.

C (Z) Cost function of a combinatorial optimization problem, as-
signing a cost value to a binary string Z.

∆αi
B,A = αB − αA Initial phase gradient between the complex phases αA and

αB of the computational state amplitudes ψA and ψB, re-
spectively, before the application of ÛC at iteration i of the
GQW.

∆Φi
B,A =∆αi

B,A + γ ⋅∆EB,A Total phase gradient between the complex phases of the
computational state amplitudes ψA and ψB, after the appli-
cation of ÛC at iteration i of the GQW, with respect to the
initial phase difference ∆αi

B,A. Note that ∆EB,A = EB −EA.

∆ (ψA, ψB) Hamming distance between the binary representations of
the computational basis states ψA and ψB.

∆Θi
B,A Phase gradient between the complex phases of the compu-

tational state amplitudes ψA and ψB, caused by the mixing
evolution ÛM at iteration i of the GQW.

EΨ = ⟨Ψ∣ĤC ∣Ψ⟩ Energy expectational value when measureing the quantum
state ∣Ψ⟩ in ĤC .

FM (t) , FC (t) Annealing schedules, controlling the strength of the mix-
ing Hamiltonian ĤM and problem Hamiltonian ĤC , respec-
tively.

γ = {γ0, . . . , γp−1} Set of phase coefficients that control the time evolution un-
der the problem Hamiltonian ĤC .

γ (i,λ) Sampling function of the phase coefficients γ used by the
HGQW model and the HGQW-A model. The function uses
an exponential distribution tuned by the optimization pa-
rameters λ, with coefficient γi being sampled at position
xi = i/ (p − 1).

Ĝk A quantum gate at position k in the gate queue.

vii

Nomenclature

ĤC Cost/Problem Hamiltonian that encodes the cost function
of a combinatorial optimization problem in the energy spec-
trum of an Ising Hamiltonian.

ĤM =
N−1
∑
i=0

σ̂x
i Driving Hamiltonian that creates maximal mixing in the

computational basis.

IG 2NG bit binary string that indexes the amplitudes in the
subspace of the global qubits.

IL 2NL bit binary string that indexes the amplitudes in the
subspace of the local qubits.

IM 64 (diagonal gate) or 32 (non-diagonal gate) bit binary string
that denotes the target qubits of a gate/gate-group.

IS Bitstring, termed subspace-index, that indexes the target-
spaces in the state-space.

IT Bitstring, termed target-index, that indexes the amplitudes
in a target-space.

J = [jN−1 . . . j0]2 N bit integer used to index the 2N computational basis
states.

Kl (β) = cosN−l (β) sinl (β) Amplitude of the interaction order l caused by the mixing
evolution ÛM (β).

λ = {λ0, . . . , λL} Set of optimization parameters used by the HGQW model
and the HGQW-A model to tune the sampling functions
β (i,λ) and γ (i,λ).

M Total number of gates in the circuit.

MC Number of gates in a gate-cluster.

MG Number of gates in a gate-group.

N Total number of qubits in the system.

NC Number of qubits in a gate-cluster.

NG Number of global qubits.

NL Number of local qubits.

p Number of iterations performed by the GQW/QAOA/AQA.

P ±1 = π ± arctan
√

1
N−1 Location of the extreme/peak values of K1 (β).

Pgs = ∣⟨Zgs∣Ψ⟩∣2 Success probability, corresponding to the overlap the state
vector ∣Ψ⟩ with the solution state ∣Zgs⟩.

viii

Nomenclature

∣Ψ⟩ =
N−1
∑

J=0
ψJ ∣J⟩ N qubit state vector with complex amplitudes ψJ = rJe−iαJ

in the computational basis {∣0⟩ , . . . , ∣N − 1⟩}. Here, rJ ∈ R
and αJ ∈ [0,2π) denote the complex amplitude and complex
phase, respectively.

R Rank of an MPI process. It functions as a unique identifier
of each GPU.

S = [sN−1 . . . s0]2 N dimensional array denoting the configuration of N Ising
spins, with si = +1 =∧ spin− ↑ and si = −1 =∧ spin− ↓. Sopt =
Sgs reffers to the ground state of an Ising Hamiltonian.

σ̂x, σ̂y, σ̂z Single-qubit Pauli operators.

σ (K) 2×N dimensional permutation matrix that mappes a qubit
K to its altered bit position in the state vector. σ accounts
for changes in the qubit order in the memory due to global-
local qubit exchanges.

T = [t15 . . . t0]2 15 bit integer denoting the CUDA threadID, hence the index
of a thread within a CUDA block.

τ Annealing time.

TGates Gate execution time of a quantum circuit.

TMP I MPI execution time of a quantum circuit.

ÛC (γ) = e−iγĤC Unitary time evolution unter the problem Hamiltonian ĤC .
It is used to create complex phase gradients between the
computational state amplitudes.

ÛM (β) = e−iγĤM Unitary time evolution unter the mixing Hamiltonian ĤM .
It is used to create interactions between the computational
state amplitudes. Note that ÛM is π-periodic.

Z = [zN−1 . . . z0]2 N bit binary string denoting an element of the domain of the
cost function. Zopt = Zgs reffers to the minimum of C (Z).

ix

Introduction

Can physics be simulated by a universal (classical) computer?

With this question, Richard Feynman began his famous speech at the First Conference on
the Physics of Computation in 1982 [1], outlining the challenges in simulating the quantum
mechanical nature of the physical world using only classical models on classical hardware. He
pointed out that in a system with R degrees of freedom and N states which each degree
of freedom can occupy, the number of possible configurations NR grows exponentially in R,
hence quickly exceeding the memory available on any classical computer today. Given this
limitation, he imagined a quantum machine, using quantum computing elements to exactly
simulate large quantum systems with computational resources that scale only proportional
to the space-time volume of the physical system in question. In doing so, he sparked a decade
long run on building large-scale quantum computing devices [2–4], including semiconducting,
superconducting and trapped ions architectures, as well as developing quantum computing
algorithms that can outperform their classical counterparts. The latter exploit quantum
phenomena such as superposition of computational basis states, entanglement, and complex
phase interference in order to solve computational problems [5]. Especially the discoveries
of Grover’s search algorithm [6] and Shor’s algorithm for integer factorization [7], proven to
achieve quadratic and exponential speed-ups compared to their best classical counterparts,
respectively, demonstrated the immense computational power associated with quantum com-
putation. Today, promising applications of quantum computation can be found in the fields
of combinatorial optimization problems [8, 9], quantum chemistry [10, 11], machine learning
[12–14] and cryptography [15].

In practice, however, significant research is still needed in order to achieve reliable quantum
computation and eventually quantum advantage. Here, the latter refers to the ability to
implement quantum algorithms for solving problems that are inaccessible to classical com-
puters, due to their high computational cost. This is because today’s quantum devices are
not ideal quantum computers in the sense that their computation is susceptible to environ-
mental influence, causing their results to become faulty [16]. These devices are called Noisy
Intermediate Scale Quantum (NISQ) devices and offer few imperfect quantum bits (O(100))
with limited coherence times and weak error-correction capabilities. Since both Shor’s and
Grover’s algorithm require millions of qubits with error correction techniques [17], recent re-
search has shifted towards noisy and shallow quantum algorithms, in order to achieve useful
quantum computation already within the next decade. Especially hybrid quantum-classical
algorithms have shown to be well suited to the constraints imposed by NISQ devices, hence
being a promising candidate for reaching quantum advantage soon [18–22]. The idea behind
these algorithms is to conduct the classically traceable part of some computation on a clas-

1

Introduction

sical device, while the classically difficult part is performed on a quantum computer. Given
this framework, the following two aspects of quantum computation will be investigated in
this thesis.

The first aspect concerns the classical simulation of quantum computation. Caused by the
error-proneness of modern NISQ devices, the simulation of quantum algorithms emerged as a
necessary discipline for developing and debugging new quantum applications [23–25]. Among
others, the study of algorithmic complexity, the benchmarking of existing quantum comput-
ing hardware and the design of quantum circuits that are difficult to characterize analytically
represent common use cases. Hence, chapter 1 will investigate novel strategies to increase
the efficiency of simulating large-scale quantum systems in the context of supercomputers
by developing a new universal quantum circuit simulator, termed SEQCS.

The second aspect of quantum computing that will be studied in this thesis concerns its
application in the context of combinatorial optimization problems. The latter includes both
scientific and industrial use cases, ranging from logistics, supply chain and manufacturing
optimizations [26] to the analysis and benchmarking of classical as well as quantum com-
puting hardware [8, 27, 28]. Inspired by hybrid quantum-classical algorithms, chapter 2 will
investigate the trotterized evolution of quantum systems in order to reduce the computa-
tional complexity and the circuit depths of common quantum optimization strategies. In
doing so, a novel quantum algorithm, termed the guided quantum walk, will be developed
and analysed.

2

Chapter 1

Simulation of ideal quantum
computing

This chapter concerns the simulation of large scale quantum systems, featuring
more than 30 quantum bits, with the goal of achieving a high-performance eval-
uation of general quantum circuits. A novel quantum circuit simulator termed
SEQCS using direct quantum state evolutions will hence be developed in the
following sections. Its implementation focusses on the JUWELS Booster super-
computer [29] and introduces GPU-accelerators spread across multiple compute
nodes into the simulation process, in order to significantly reduce the simulation
time compared to traditional CPU-based codes. Moreover, novel optimization
strategies regarding the memory management, memory access patterns and the
load balance will be proposed. This allows to leverage the hardware restrictions
of the GPU, which were found to limit the performance of prior simulators [27].
In doing so, SEQCS sets itself among the fastest quantum circuit simulators,
managing 17 to 329 times faster single gate executions and 23 to 70 times faster
evaluations of certain real-world quantum algorithms compared to the Jülich uni-
versal quantum computer simulator (JUQCS-G) [30], whose main development
efforts are on large-scale simulations using distributed memory. This significant
improvement in the simulation speed enables the investigation of quantum opti-
mization algorithms in chapter 2 within parameter regions that were previously
impractical to simulate.

This chapter is structured as follows: section 1.1 will give an introduction into
quantum computing and provide the reader with the basic concepts involved
in the evaluation of quantum circuits. Following that, section 1.2 concerns the
design and implementation of SEQCS. First, the simulation technique will be
explained, followed by a discussion of the programming framework and its hard-
ware limitations. Finally, the simulation code will be presented by focussing on
the three abstraction levels (distributed memory space, GPU caching and gate
computation) separately. Concluding this chapter, section 1.3 will offer various
benchmark results comparing the performance of SEQCS to JUQCS-G with re-
spect to individual gate executions and real-world quantum algorithms.

3

1. Simulation of ideal quantum computing

1.1. Ideal quantum computing
This section provides an overview of the basic concepts involved in quantum computation,
including quantum states, quantum gate operations and quantum measurements. A more
detailed description can be found in [31].

1.1.1. Quantum states
Every isolated quantum system of finite dimensions d ∈ N is associated to a complex Hilbert
space Hd ≅ Cd, called the state space. Elements of the state space are l2-normalized pure
quantum states, denoted as ∣Ψ⟩ ∈ Cd. The dual to ∣Ψ⟩ is written as ⟨Ψ∣, with ⟨Φ∣Ψ⟩ being
the inner-product between two pure states ∣Ψ⟩ and ∣Φ⟩. Using the state set {∣0⟩ , . . . , ∣d − 1⟩},
constituting an orthonormal basis in Cd termed the computational basis, ∣Ψ⟩ can be written
as:

∣Ψ⟩ =
d−1
∑
j=0
ψj ∣j⟩ =

⎛
⎜
⎝

ψ0
⋮

ψ2N−1

⎞
⎟
⎠
, (1.1)

with ψj = ⟨j∣Ψ⟩ ∈ C and ∑j ∣ψj ∣2 = 1. A special case in the context of quantum computing
are two-level (d = 2) quantum systems (e.g. spin-1

2 systems), whose state space is C2. These
systems are commonly referred to as qubits. Qubits denote the smallest unit of information
in quantum computation and represent the quantum mechanical analogue to classical bits.
While the latter lives in a discrete state space {0,1}, i.e. at each point in a computational
the system can either reside in the 0 or 1 state, a qubit can be in any complex linear
combination (superposition) of its computational basis states, with ∣0⟩ (∣1⟩) representing the
classical bit state 0 (1). Thus, quantum theory provides a much broader continuous state
space for computation to operate in, determined by the complex state amplitudes ψ0 and
ψ1. A common way to visualize the state and operations performed on a single qubit is to
represent it as a unit vector inside a three-dimensional unit sphere. Using ∣ψ0∣2 + ∣ψ1∣2 = 1,
implying that ∣ψ0∣ = cos (θ/2) and ∣ψ1∣ = sin (θ/2) with an angle θ ∈ [0, π], and the fact that
global phases of quantum systems are unobservable, yielding ϕ ∈ [0,2π) as the relative phase
between the two state amplitudes, Eq. 1.1 becomes:

∣Ψ⟩ = cos(θ2) ∣0⟩ + e
iϕ sin(θ2) ∣1⟩ . (1.2)

Given by the domain of the two angles θ and ϕ, every pure single-qubit state ∣Ψ⟩ can thus be
visualized as a point on the surface of a unit sphere termed the Bloch sphere (see Fig. 1.1).
In doing so, the Bloch sphere operates in a three-dimensional Cartesian coordinate system,
with the unit axes corresponding to the ±1 eigenstates of the three Pauli matrices:

σx = (0 1
1 0) , σy = (0 −i

i 0) , σz = (1 0
0 −1) . (1.3)

4

1.1. Ideal quantum computing

Figure 1.1.: The figure shows a sketch of the Bloch sphere, representing a pure single-qubit
state ∣Ψ⟩. The North and South Pole correspond to the ground state ∣0⟩ and
the excited state ∣1⟩ of the two-level quantum system, respectively. An arbitrary
position on the sphere is parameterized via Eq. 1.2 using the azimuthal angle
θ ∈ [0, π] and the polar angle ϕ ∈ [0,2π).

In particular, the eigenstates of σz form the computational basis {∣0⟩ , ∣1⟩} and are located
at the North and South Pole of the sphere, respectively. Moreover, the eigenstates ∣±⟩ =
(∣0⟩ ± ∣1⟩) (∣±i⟩ = (∣0⟩ ± i ∣1⟩)) of σx (σy) denote the positive and negative x-axis (y-axis). As
a consequence, the three-dimensional Bloch vector r = (rx, ry, rz)⊺, representing ∣Ψ⟩ on the
surface of the Bloch sphere, can be derived from the expectation values of ∣Ψ⟩ with the Pauli
matrices:

r =
⎛
⎜
⎝

rx

ry

rz

⎞
⎟
⎠
=
⎛
⎜
⎝

⟨Ψ∣σx∣Ψ⟩
⟨Ψ∣σy ∣Ψ⟩
⟨Ψ∣σz ∣Ψ⟩

⎞
⎟
⎠
=
⎛
⎜
⎝

r sinϕ cos θ
r sinϕ sin θ
r cosϕ

⎞
⎟
⎠
. (1.4)

Note that in this parametrization, one can think of the Bloch sphere as a distorted half-
sphere, since opposite vectors on the sphere represent orthogonal states. So far, only single-
qubit systems have been considered. In order to perform meaningful calculations, composite
quantum systems of N qubits are needed, where the associated state space H2N = H⊗N

2 =
span{∣0⟩ , ∣1⟩}⊗N ≅ C2N is given by the N -fold tensor product of the individual state spaces
H2. This means that an N qubit state is a superposition of the 2N computational basis states
generated by all combinations of the single qubit bit states:

∣Ψ⟩ = ∑
j0...jn−1∈{0,1}N

ψj0...jn−1 ∣j0⋯jn−1⟩ =
2N−1
∑
J=0

ψJ ∣J⟩ =
⎛
⎜
⎝

ψ0
⋮

ψ2N−1

⎞
⎟
⎠
. (1.5)

Here, the basis states are indexed by the integer J = [j0 . . . jn−1]2, with ji denoting the
computational state of qubit i and ψJ = ⟨J ∣Ψ⟩. Note that for simplicity of notation, tensor

5

1. Simulation of ideal quantum computing

product states ∣Ψ⟩ ⊗ ∣Φ⟩ will be abbreviated as ∣Ψ⟩ ∣Φ⟩ or ∣ΨΦ⟩. An important property of
these composite quantum systems is that not all states in the tensor-product space H⊗N

2 can
be expressed as a tensor product themselves. Such states are called entangled states, referring
to a strong purely quantum-mechanical correlation between the involved qubits, allowing to
gain information about a qubit’s state by only observing its entangled qubits. As an example,
consider the two-qubit entangled Bell state ∣Φ+⟩ = 1

2 (∣00⟩ + ∣11⟩). By determining the state
of either one of the two qubits, the state of the other one is also inferred. Both quantum
entanglement and state superposition are exclusive to quantum systems and are often stated
as the main properties of quantum computing that provide an advantage compared to the
classical computation model [5].

1.1.2. Quantum gates
In order to perform computations on an N -qubit quantum system, one needs to define a set
of operations on the composite quantum state. By analogy with a classical computer that
performs elementary gate operations, like AND and NOT, to alter the state of its classical
bits, a quantum computer uses a sequence of quantum gates (called a quantum circuit) to
modify the state amplitudes of one or more qubits. These transformations are governed by
the time-dependent Schrödinger equation (TDSE) of closed quantum systems:

i h̵
d ∣Ψ (t)⟩

dt = Ĥ (t) ∣Ψ (t)⟩ , (1.6)

with Ĥ ∈ C2N×2N denoting the Hamiltonian under which the system evolves, and ∣Ψ (t)⟩
referring to the quantum state at some point in time t. Note that throughout this thesis,
units with h̵ = 1 will be used. In case Ĥ is time-independent and the system is initialized in
some state ∣Ψ0⟩, the time evolution is given by:

∣Ψ (t)⟩ = e−i t Ĥ ∣Ψ0⟩ , (1.7)

yielding the unitary evolution operator Û = e−itĤ . Thus, by preparing suitable Hamiltonians
Ĥ, arbitrary unitary operations can be applied to the state vector ∣Ψ⟩. Since the three
Pauli matrices (see Eq. 1.3), in combination with the identity operator Î, form a complete
orthogonal basis in C2×2, any quantum gate acting on a single qubit can be expressed as a
linear combination of time evolutions under the Pauli operators. With respect to the Bloch
sphere representation of a single-qubit quantum systems (see Fig. 1.1), these evolutions
define rotation operations Rα(γ) = exp (−i γ σα /2) of the Bloch vector r around an axis α
by some angle γ, with σα denoting the respective Pauli matrix. Hence:

Rx(γ) = e−i γ
2 σx = (cos (γ/2) −i sin (γ/2)

−i sin (γ/2) cos (γ/2)) , (1.8)

Ry(γ) = e−i γ
2 σy = (cos (γ/2) − sin (γ/2)

sin (γ/2) cos (γ/2)) , (1.9)

Rz(γ) = e−i γ
2 σz = (exp (−iγ/2) 0

0 exp (iγ/2)) . (1.10)

6

1.1. Ideal quantum computing

Besides these elementary rotation gates, the Hadamard gate H, defined by

H = −iRx (π) Ry (π/2) =
1√
2
(1 1
1 −1) , (1.11)

is a commonly used single-qubit gate. Its importance comes from the fact that it allows
to create and resolve superpositions between the computational basis states by mapping:
{∣0⟩ , ∣1⟩} ↔ {∣+⟩ , ∣−⟩}. However, using single-qubit gates alone does not yield universal quan-
tum computation, as for example entanglement between qubits cannot be created. Con-
sequently, additional two-qubit gates are often considered, including the controlled-NOT
(CNOTi,j) and the controlled-phase (CZi,j) gates, which perform conditioned operations on
the second qubit j depending on the state of the first qubit i:

CNOT =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎟
⎠
, CZ =

⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎟
⎠
. (1.12)

In doing so, arbitrary qubits can be entangled: e.g. CNOT0,1H0 ∣00⟩ = ∣Φ+⟩. Although
quantum gates can in general operate on the state spaces of arbitrary numbers of qubits,
one usually considers at most two-qubit operations, due to the limited connectivity be-
tween qubits on real-world quantum computing hardware, typically allowing only interac-
tions between neighbouring qubits. Fortunately, however, a universal set of quantum gates
can already be constructed from the aforementioned single- and two-qubit gates [32, 33]:
{H, T = Rz (π/4) , CNOT}. Note that many other sets of gates are also known to be uni-
versal, which are all computationally equivalent to each other up to polylogarithmic factors,
ensured by the Solovay-Kitaev Theorem [34]. A detailed list of common quantum gates can
be found in appendix A.

1.1.3. Quantum measurements
After a quantum algorithm, i.e. a series of single- and multi-qubit gates, has been performed
on an initial quantum state, e.g. ∣0⟩⊗N or ∣+⟩⊗N , one eventually has to extract information
from the final state vector ∣Ψ⟩. In contrast to a classical bit, however, quantum mechanics
protects the state amplitudes ψJ , defining ∣Ψ⟩, from direct observations. This is because
they are associated with measurement probabilities, such that when performing a projective
measurement in the computational basis of N qubits, the outcome J ∈ {0,1}⊗N is obtained
with probability ∣ψJ ∣2, yielding the post-measurement state ∣J⟩ of the quantum system. This
collapse of the state vector is unavoidable and necessary for the state to be consistent with the
measurement outcome. Often, the more information a measurement extracts from ∣Ψ⟩, the
more disturbed the final state will be. As a consequence, since a single measurement only
provides a snapshot of ∣Ψ⟩, numerous state preparations and measurements are generally
required to reconstruct the quantum state with sufficient accuracy.

7

1. Simulation of ideal quantum computing

1.2. Quantum circuit simulation
Quantum computing evolved as an interdisciplinary field between physics and computer
science with the goal to accelerate computational bottlenecks using the laws of quantum-
mechanics. By exploiting quantum phenomena such as superposition of computational basis
states, qubit entanglement and complex phase interferences, quantum computers are able
to simultaneously manipulate all bit combinations in a single operation, thus performing
calculations/evaluations in a seemingly highly parallel fashion [5]. This sparked the hope of
finding quantum algorithms that run exponentially faster compared to their classical coun-
terparts when solving problems of non-polynomial complexity. Promising applications of
quantum computing can be found in the fields of combinatorial optimization problems [8, 9],
quantum chemistry [10, 11], machine learning [12–14] and cryptography [15]. To the present
day, however, access to gate-based quantum computers, despite being partially available as
cloud services [35, 36], is still limited, offering only relatively few qubits for operation. More-
over, significant environmental noise on quantum gates and limited connectivity between
the qubits will continue to exist on near-term hardware. The former requires error-correction
strategies, which significantly reduce the number of logical qubits, for meaningful calculation
[37] and the latter increases the total number of gates in a circuit by requiring numerous
SWAP gates, in turn introducing additional error sources. As a consequence, classical sim-
ulation of quantum computing algorithms emerged as a necessary discipline for developing
and debugging new quantum applications [23–25]. Among others, the study of algorithmic
complexity, the benchmarking of existing quantum computing hardware and the design of
quantum circuits that are difficult to characterize analytically (see e.g. chapter 2), represent
common use cases.

The framework that will be considered throughout this thesis treats the ideal quantum
computing device as an accelerating hardware to a classical processor [23]. Much like a
graphics processing unit (GPU) that is mainly used for rendering, the quantum computer is
dedicated to certain problem types and will receive a classical initial quantum state (e.g. ∣0⟩⊗N

or ∣+⟩⊗N) and a set of instructions (quantum gates) to perform on the state. As the laws
of quantum mechanics prohibit a direct readout of the final quantum state, the output of
the quantum algorithm will be obtained via measurements, returning a classical discrete
computational state according to the measurement probabilities (see section 1.1.1). Using
this model of computation, the quantum computer can simply be replaced by a classical
simulator, that will be introduced in the following sections.

1.2.1. Simulation techniques
The simulation of ideal universal quantum computation is an inherently non-trivial task on
classical digital computers, due to the exponentially growing complexity of the simulated
Hilbert space [38]. Consider for example a 45-qubit problem instance. Performing a single
gate operation on the quantum state generally requires updating the state amplitudes of 245

basis states, which, in case the full state vector ∣Ψ⟩ is held in memory, requires ≈ 1/2 Petabytes
of storage. Consequently, the simulation of intermediate quantum circuits (N ≥ 40) already
reaches the capabilities of modern supercomputers. With respect to these massive compu-
tational resources required three branches of quantum circuit simulators, each proposing a
different dependency of the exponential scaling on the properties of the quantum circuit,
have emerged in the literature:

8

1.2. Quantum circuit simulation

• Direct state evolution (Schrödinger style): This ansatz is an instance of the
so-called Schrödinger-style simulation, a mainstream technique for general-case simu-
lation of quantum algorithms, circuits and physical devices [39]. It represents the full
quantum state ∣Ψ⟩ by a vector of complex-valued amplitudes, which are then modified
in place through a series of unitary transformations (gate operations). By keeping a
close relation to the theory discussed in section 1.1.2, each state amplitude can be
updated using only a few basic operations, e.g. 2 multiplications and 1 addition for a
single qubit gate, yielding a small computational overhead and a computational cost
that scales linearly in the number of qubits N involved. This, however, comes at the
cost of an exponential memory footprint, since the full state vector (2N complex double
precision floats = 2N+4 bytes) must be kept in memory throughout the entire simula-
tion. As a consequence, direct state evolution algorithms are currently limited to about
45 qubits on modern supercomputers [24, 30].

• Tensor network contractions (Feynman style): The main idea of this approach
is based on the representation of a quantum circuit as a tensor network, with rank-
2 tensors (tensors of two 2-dimensional indices) denoting single qubit gates, rank-4
tensors (tensors of four 2-dimensional indices) being two-qubit gates, and in general
rank-2N tensors representing N-qubit gates [40–42]. A tensor network is then a ten-
sor expression involving the product of several tensors of varying ranks, e.g. Tlm =
∑ghijkAghBhiCijDgkEjklm. In order to apply a gate operation to a qubit in this net-
work, the corresponding gate tensor has to be adjoined to the open indices of the
target qubit. By attaching all gates to the network in the order in which they ap-
pear in the circuit, the tensor network encodes the output state of the quantum algo-
rithm. A main benefit of this simulation ansatz is its memory efficient representation
of the network structure, which grows only linearly in the number of qubits and gates
involved, allowing to simulate system sizes of up to 100 qubits on modern supercom-
puters [43]. This efficiency, however, comes at the cost of computational overhead, as
for obtaining the probability amplitudes the full network must be contracted, yield-
ing the multiplication of all tensors. In doing so, the computational and memory cost
of the contraction depend heavily on the rank of the largest intermediate tensor and
scale (at least) exponentially in the number of open indices, making it impractical for
deep circuits [21]. Moreover, finding the optimal contraction order of the network is
believed to be NP-complete [44]. Besides that, contracting the network with N open
indices again causes an exponential memory footprint, since 2N amplitudes need to
be stored. Consequently, tensor network strategies typically utilize the Feynman path
summation ansatz of calculating the single state amplitudes separately, thus treating
memory cost for computation time [45–47]. As a conclusion, tensor network contrac-
tion codes are generally viable in the case of large shallow quantum circuits, where
only the calculation of a few amplitudes of the final quantum state is required.

• Hybrid algorithms (Layered simulation): Recently, several authors have been
exploring hybrid quantum simulation techniques, by combining direct state evolutions
with Feynman path summation in order to enable scaling tradeoffs between the circuit
depth (number of gates) and size (number of qubits) with respect to the computa-
tional resources needed [38, 48, 49]. Generally, these approaches divide the original
quantum circuit into several sub-circuits with less qubits, which are then simulated
independently using the same method as for the Schrödinger-style simulation. In doing
so, the memory requirement for simulating these sub-circuits becomes independent of
the total number of qubits and gates in the circuit, but depends only on their config-

9

1. Simulation of ideal quantum computing

urable size. As a result, simulations with up to 128 qubits have been achieved in the
literature [27]. However, this ansatz is only viable in case the individual sub-circuits
are connected loosely, since each entangling gate doubles the number of independent
circuits, as each state configuration of the involved qubits has to be simulated sepa-
rately and summed up later. This can either be achieved by storing snapshots of the
sub-state-vector in memory or computing parts of the circuit multiple times. Conse-
quently, either the memory or computational cost scales exponentially in the number
of entangling gates in the cut [21].

The main goal of the quantum circuit simulator, which will be discussed in the following
sections, is to provide a time-efficient simulation framework for investigating quantum op-
timization algorithms in chapter 2. These investigations will focus on variational quantum
algorithms in the regime of intermediate circuit depths involving 10 to 30 qubits. The cor-
responding quantum circuits are structured in layers, with each layer consisting of a set of
single-qubit rotation gates and an N -qubit diagonal transformation, with the latter entan-
gling the majority of qubit pairs in the system. An example of such a quantum circuit can
be found in appendix B.1. By combining up to 80 gate-layers, the simulator must be able to
compute several thousands of individual gate operations efficiently. Moreover, the respective
circuits must be evaluated multiple thousands of times, due to the variational character of
the studied algorithms. In addition to this, the energy expectation value with respect to a
given problem Hamiltonian is needed during the calculations, hence requiring samples of the
full state vector at the end of each circuit run.

Although tensor network contraction based algorithms have been applied to variational quan-
tum algorithms in the past [43, 50], the strong requirement of shallow circuit depths makes
this technique unsuitable for the targeted investigations. Moreover, the large number of
entangling gates spread across all pairs of qubits also prevents an efficient separation into
sub-circuits, ruling out hybrid approaches as well. Fortunately, however, the full state vec-
tor of up to 30 qubits can be fit into memory, thus a direct state evolution algorithm will
henceforth be considered.

1.2.2. Programming framework
The Schrödinger-style simulation of intermediate-sized quantum circuits requires a simula-
tion code that can make efficient use of the parallel architecture of modern supercomput-
ers, utilizing the vast number of compute nodes, hardware accelerators (e.g. GPUs) and
inter-network communication bandwidths [38, 51]. Previous work has already demonstrated
promising performance improvements by the introduction of GPUs into the simulation pro-
cess [25, 30, 52], due to the highly parallel nature of the update routines (e.g. applying a
q-qubit gate yields 2N−q independent subsets of amplitudes, which can be modified simulta-
neously). For example, Willsch et al. achieved an up to 49 times faster circuit evaluation
using the GPU-accelerated version of JUQCS compared to its classical count part. Motivated
by these findings, a novel C++ based quantum circuit simulator, termed SEQCS, operating
on GPUs distributed among multiple compute nodes is developed as part of this thesis. Key
features of this simulator are (1) an improved memory management by making efficient use
of self-managed cache on the GPU, (2) a reduction of gate complexities, by restructuring the
quantum circuit and combining multiple gate operations into single update routines, and (3)
an advanced internode communication scheme using the Message Passing Interface (MPI)
[53]. Note, that the following discussions will focus on the JUWELS Booster supercomputer
[29], providing access to over 3500 NVIDIA A100 GPUs [54].

10

1.2. Quantum circuit simulation

1.2.2.1. CUDA platform

The Compute Unified Device Architecture (CUDA) [55] has been developed as both a hard-
ware and software platform that is able to exploit the massive parallel processing capabilities
of recent NVIDIA GPUs. Introduced in 2006, it offers a scalable and parallel programming
model to bypass the graphics API and thus solve general-purpose problems on the GPU
directly using C++.

From a hardware perspective, the GPU device is structured into Graphics Processing Clus-
ters (GPC), featuring multiple Texture Processing Clusters (TPC), that in turn consist of
arrays of Streaming Multiprocessors (SM). Each SM contains a set of Streaming Processors
(SP), often separated into single (32-bit) and double (64-bit) precision compute units, load
and store memory units, and special function units, e.g. used for calculating trigonomic func-
tions. In Fig. C.6 in appendix C the ampere architecture used by the NVIDIA A100 GPUs
is depicted. In doing so, the CUDA execution model is based on a hierarchy of abstraction
layers distributed among the SMs: grids, blocks, warps and threads. Threads denote the most
basic execution units, which are directly mapped onto the individual SPs. A batch of threads
cooperating together on one multiprocessor is termed a block. A grid is composed of several
blocks, and because there can be more blocks than multiprocessors, different blocks of a grid
are scheduled among the array of SMs. The GPU supports the parallel execution of very
large numbers of light-weight threads, with minimal overhead for thread creation, synchro-
nization, and termination. This is necessary, as the highly scalable architecture of the GPU
demands a Single Instruction Multiple Threads (SIMT) execution scheme on the SMs. Thus,
each block of compute units within the SM partitions (see Fig. C.7 in appendix C) performs
the same instruction on different threads and supposedly on different data elements (Data-
Level Parallelism). As a consequence, threads within a block are additionally grouped into
warps, i.e. fixed sets of 32 threads, such that in each clock cycle a subset of all warps in
a block is assigned for execution to the SM partitions by the warp scheduler. Note that in
general it is preferable to have blocks consisting of more warps than SM partitions, as well
as multiple blocks under scheduling on the same SM, since it allows the warp scheduler to
potentially hide memory access latencies by postponing the execution of one warp in favour
of another. The occupancy of the SMs can be calculated by the fraction of active threads,
limited by the required hardware resources for their execution, to the number of possible
threads, determined by the compute capability of the GPU.

A CUDA program is now specified in terms of a kernel function, that is executed concurrently
by all threads. In order to direct the calculation, the API provides the 16 bit integer variables
threadID T = [t15 . . . t0]2 and blockID B = [b15 . . . b0]2, denoting the thread index in a block
and the block index in the grid, respectively, which can be used to identify the individual
threads. In doing so, CUDA draws a strict barrier between CPU (Host) and GPU (Device)
codes, including a separation of their memory spaces. The latter demands explicit memory
transfers between the Host and the Device. Regarding Device memory, CUDA grants low-
level access to the various memory spaces on the GPU, including global, shared and constant
memory: Global memory resembles the main Device memory, offering the largest capacity
(40 GB on the A100 GPU) but also the highest access latencies (400 − 800 clock cycles). It
is available to all threads in the application and will be used to store the entire state vector
∣Ψ⟩, i.e. the array of double-precision complex state amplitudes, of up to 31 qubits. Shared
memory is a form of self-managed L1-cache (latencies ≈ 10 clock cycles), private to each
thread block. It has a size of 192 KB per SM (on the A100 GPU) and will store subsets of
the state vector of 11 qubits across 4 blocks on each SM. Finally, Constant memory describes

11

1. Simulation of ideal quantum computing

a section of the global Memory. As it is read-only, it is heavily cached into 8 KB of L1-cache
on the SMs, yielding similar performances as shared memory in case all threads in a warp
access the same memory location. It will be used to store the properties of the quantum
circuit (e.g. number of qubits and gates) as well as the series of gate operations.

1.2.2.2. Hardware limitations

In order to achieve high performance in the simulation of quantum circuits using CUDA,
the fine-grained parallelism of the GPU has to be exploited by considering the following
performance bottlenecks [55]:

• Warp divergence: Control flow statements in the kernel function can force threads
to follow different execution paths. If this happens between threads of the same warp,
the warp must be re-executed for each path taken, each time disabling all threads that
do not follow the respective execution path. This process is called warp divergence and
is caused by the SIMT architecture of the GPU. It can result in performance losses of
up to 32 times, in case all threads have to be evaluated separately.

• Global memory access: Global memory requests are served via either 32-, 64- or
128-byte memory transactions. When threads of the same warp issue a memory re-
quest, their collective access can be satisfied via a single memory transaction, provided
that: (1) the memory accesses are sequential; (2) the starting address of the requested
memory segment is a multiple of the transaction size; (3) the requested size per thread
is 4, 8 or 16 bytes. If all conditions are met, the transactions will be combined, while
otherwise the threads will be served separate 32-byte memory transactions, reducing
the global memory bandwidth.

• Bank conflicts: The high memory bandwidth of the shared memory is achieved by
dividing the memory space into 32 parallel accessible banks, where sequential 32-bit
words are organized into sequential banks. Memory requests that fall into separate
banks can be executed simultaneously. However, if m requests point to the same bank,
they must be served sequentially, causing an m-way bank conflict and lowering the
achieved bandwidth.

• Register spilling: Registers are used by the threads to store variables and intermedi-
ate results of calculations. The total number of registers available on each SM is fixed
(65536 32-bit registers on the A100 GPU) and is distributed equally across all active
threads on the SM. In case a block requests more registers than available, register
spilling occurs, and register data is temporarily stored in a section of the global mem-
ory. This can have a significant impact on performance, as the variable access speeds
increase from ≈ 1 cycle to ≥ 400 cycles.

1.2.3. Implementation of SEQCS
The target problem of a quantum circuit simulator based on direct-state evolutions is to
compute the complete output state of an N qubit register, ∣Ψout⟩ = ∑2N−1

J=0 ψout
J ∣J⟩, starting

from an initial state ∣Ψin⟩ = ∑2N−1
J=0 ψin

J ∣J⟩, given a unitary transformation Û of dimension
2N × 2N , i.e. ∣Ψout⟩ = Û ∣Ψin⟩. At each point in the simulation, the entire state vector ∣Ψ⟩ is
held in the global memory of the GPU by storing its complex amplitudes ψJ consecutively
in a double-precision array of 2N+4 bytes. Note that other approaches to reduce the overall

12

1.2. Quantum circuit simulation

memory-footprint by using specially designed single-precision encodings have been investi-
gated in the literature before [38, 56, 57]. However, as these typically come at the cost of
additional computational overhead and reduced accuracy for deep quantum circuits, they
are unsuitable for the targeted simulations in chapter 2 and hence will not be considered
here. The unitary transformation Û is defined by the linear combination of M individual
quantum gate operations Ĝi constituting the quantum circuit, i.e. Û = ∏M−1

i=0 Ĝi. The arrange-
ment of the gate operations Ĝi in the matrix product defines the gate-queue {Ĝ0, . . . , ĜM−1},
and thus the order in which the transformations are applied to the state vector ∣Ψ⟩. Note
that the initial order of the queue (defined by the user input), will be modified during sev-
eral preprocessing steps as depicted in sections 1.2.3.1 to 1.2.3.3 in favour of a performant
simulation with respect to section 1.2.2.2. This is in contrast to other approaches, which
leave the quantum circuit untouched [30]. Without loss of generality, the unitary matrix Ĝ
associated with an application of a quantum gate over n consecutive qubits starting from
qubit i, is given by:

Ĝ = ÎN−n−i ⊗ ĝ ⊗ Îi, (1.13)

with the sub-matrix ĝ = ∑2n−1
i,k=0 ui,j ∣i⟩ ⟨j∣ of dimension 2n × 2n corresponding to the transfor-

mation of the n involved qubits. Applying Ĝ to a state amplitude ψJ denoting the N -qubit
computational basis state ∣J⟩ = ∣jN−1 . . . j1 j0⟩, with [jN−1 . . . j1 j0]2 being the binary rep-
resentation of the integer index J , yields:

ψout
J = Ĝψin

jN−1...j1j0 (1.14)

= ∑
K=k0...kn∈{0,1}n

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u0,K ψin
jN−1 ... jn+i kn−1 ... k0 ji−1 ... j0

, if jn+i−1 . . . ji = 0 . . .00

u1,K ψin
jN−1 ... jn+i kn−1 ... k0 ji−1 ...j0

, if jn+i−1 . . . ji = 0 . . .01

⋮

u2n−1,K ψin
jN−1 ... bn+i kn−1 ... k0 ji−1 ... j0

, if jn+i−1 . . . ji = 1 . . .11

(1.15)

= ∑
K=k0...kn∈{0,1}n

uA, K ψin
B . (1.16)

Here, A = >>i (J) & (2n − 1) and B = [J & ∼ (2n+i − 2i)] + <<i (K), with & denoting the
bit-wise AND, ∼ being the bit-wise NOT, and <<i and >>i referring to the bit-wise left and
right shift operations by i bits, respectively. According to Eq. 1.16, the state transformation
is structured into 2N−n disjoint closed subspaces of 2n amplitudes, such that the calculation of
each amplitude only involves amplitudes that belong to the same subspace. Consequently, the
binary representation [jN−1 . . . j1 j0]2 of the amplitude index J can be separated into two
kinds of bit strings. The binary values IT = [ji+n . . . ji]2, denoting the qubit indices which a
gate operation is acting on, will henceforth be called target indices forming the target index
IT of the corresponding amplitude ψJ in its respective target-space. On the other hand,
the remaining bits IG = [jN−1 . . . ji+M ji−1 . . . j0]2 describe the subspace indices, with the
subspace index IS labelling the individual target-spaces. Thus, amplitudes belonging to the
same subspace share identical IS and different IT . Using this convention, the state update
can be computed in parallel across the target-spaces by assigning each subspace to one of

13

1. Simulation of ideal quantum computing

2N−n threads. The details about the implementation and optimization of this process will be
discussed in the following three sections, starting with the distribution of the state vector
across multiple compute nodes (section 1.2.3.1), continued by the memory management
within each GPU (section 1.2.3.2), and completed by the implementations of the various
gate types (section 1.2.3.3). Based on these strategies, the execution sequence depicted in
Fig. 1.2 is used by SEQCS for the simulation of a quantum circuit. Moreover, an example of
a gate-schedule obtained by these strategies can be found in Fig. B.3 in appendix B.1. The
program code of SEQCS is given in appendix D.

Preprocessing

Insertion of

global-local qubit

exchanges

Creation of
gate-clusters

Formation of

gate-groups

CUDA kernel

Assignment of
CUDA blocks to
target-spaces

Transfer of

target-space
from global
memory to

shared memory

Transfer of

target-space
from shared
memory to

global memory

Measurement of state vector

Gate-group

Assignment of CUDA
threads to amplitudes

in shared memory

Update of amplitudes For each
gate-group
in cluster

Exit

For each cluster in circuit
Exit

C
om

bi
ne

d
gl

ob
al

-lo
ca

l q
ub

it

 e

xc
ha

ng
e

if
re

qu
ire

d

Tr
an

sf
er

 o
f g

at
e

pa
ra

m
et

er
s

to
co

ns
ta

nt
 m

em
eo

ry

CUDA block sync.

Figure 1.2.: The diagram depicts the execution sequence used by SEQCS for the simulation
of an arbitrary quantum circuit. The process starts by analysing the circuit (Pre-
processing) and inserting global-local qubit exchanges (see section 1.2.3.1). Af-
terwards, the gate queue is rearranged in order to form gate-clusters (see sec-
tion 1.2.3.2) and subsequentially gate-groups (see section 1.2.3.3). Following this
preprocessing stage, SEQCS evaluates each gate cluster separately, by first exe-
cuting global-local qubit swaps and transferring the respective gate parameters
into the constant memory. Then, a CUDA kernel is launched, which first trans-
fers the target-space into the shared memory. Next, each gate-group involved in
the cluster is executed in-place on the shared memory. Finally, the target-space
is transferred back into the global memory and SEQCS continues with the next
cluster. In case all clusters have been evaluated, a user-defined measurement is
applied to the state vector and the program exits.

1.2.3.1. Multi-node computation

The simulation of large quantum circuits involving numerous qubits using direct state evo-
lution is generally limited by the amount of memory that is available on the simulating
system. The NVIDIA A100 GPUs, which are considered here, support state vectors up to
N = 31 qubits (≈ 32 GB) in their global memory, putting a hard limit on the number of
qubits that can be simulated via a single GPU. In order to simulate systems beyond 31
qubits, the highly parallel architecture of the JUWELS Booster system will be utilized, to
perform parallel computations on subsets of the state vector ∣Ψ⟩ distributed among several
compute nodes and thus memory spaces. Largely inspired by the work of De Raedt et al.
[58], the idea is to use an exponentially growing number of GPUs, allowing to store state

14

1.2. Quantum circuit simulation

vectors of up to 42 qubits (= 2048 A100 GPUs) as well as to compensate the exponentially
growing amount of arithmetic operations needed to compute Eq. 1.16. Hence, a close-to
ideal weak-scaling of the gate computation time can be achieved, which is only limited by
the amount of internode communication during the calculation. The latter is realized using
the CUDA-aware MPI, which enables direct transfers between the Devices’ global memory
spaces without expensive exchanges into the Host memory [53]. Note that the investigation of
other communication frameworks, such as NCCL [59] and NVSHMEM [60], both promising
significant speed-ups in GPU-GPU-communication compared to MPI [51], is left for future
work.

Regarding the implementation of the distributed simulation, a set of 2NG MPI processes is
used, each being individually assigned to a rank R and the memory space of one GPU. In
doing so, each process is responsible for the computation of a subset of ∣Ψ⟩ of size 2NL ,
with NL ≤ 31 and N = NL + NG. As a consequence, the qubits and thus the bit string
[jN−1 . . . j1 j0]2 of the amplitude index J is separated into two regions:

J = [jN−1 . . . jNL

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
global qubits

jNL−1 . . . j0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

local qubits

]2. (1.17)

The first NL qubits, i.e. IL = [jNL−1 . . . j0]2, denote the set of local qubits, meaning that
for each qubit i < NL both coefficients ψjN−1 ... jNL

... ji+1 0/1 ... j0 of the state vector ∣Ψ⟩ are
always located at the same local memory of one of the NG MPI processes for all 2N−1

combinations of the computational basis states of the remaining qubits. In contrast to
this, the coefficients ψjN−1 ... ji+1 0/1 ... jNL−1 ... j0 with i ≥ NL belong to the MPI processes
R1 = [jN−1 . . . 0 . . . jNL

]2 and R2 = [jN−1 . . . 1 . . . jNL
]2 = R1 ∧ 2i−NL , respectively, with

∧ denoting the bit-wise XOR. Therefore, they are distributed globally among two separate
GPUs and hence termed global qubits, with IG = jN−1 . . . jNL

denoting the MPI rank. Note
that an arbitrary amplitude ψJ is located at GPU IG at memory location IL.

This distinction of the qubits is necessary with respect to the implementation of the gate op-
erations. Two cases have to be considered here: (1) In case the gate operation (see Eq. 1.13)
acts non-trivially only on a subset of local qubits, Eq. 1.16 can be computed independently
in parallel on each GPU, as all elements (amplitudes) belonging to each target-space IS

are located in the same local memory of one GPU. Thus, no communication between the
MPI processes is necessary. (2) This situation changes once an operation includes global
qubits. The problem is that elements of the same target-space are distributed among sev-
eral GPUs. Since each MPI process has only access to its local memory, transfers of state
amplitudes between the GPUs become necessary. As an example, consider a Hadamard gate
(see Eq. 1.11) applied to qubit i ≥ NL. Its action on the state vector can be computed by
temporarily swapping the global qubit i with a local qubit k < NL. Thus, pairs of MPI pro-
cesses, with R1 and R2 = R1 ∧ 2i−1, exchange half of their local state amplitudes, such that
ψjN−1 ... 0 ji−1 ... jNL−1 ... 1jk−1 ... j0 (ψjN−1 ... 1 ji−1 ... jNL−1 ... 0 jk−1 ... j0) gets replaced by the value
of ψjN−1 ... 1 ji−1 ... jNL−1 ... 0 jk−1 ... j0 (ψjN−1 ... 0 ji−1 ... jNL−1 ... 1 jk−1 ... j0). In doing so, the am-
plitude sub-spaces IS are no longer distributed and thus Eq. 1.16 can be evaluated. Finally,
the interchanged amplitudes are transferred back to their original memory spaces. Note that
only in case of diagonal gates, i.e. ui,k = 0 ∀i ≠ k < 2n in ĝ (see Eq. 1.13), no data exchange
is needed despite acting on global qubits, since each amplitude can be updated exclusively
based on its own value.

15

1. Simulation of ideal quantum computing

A clear drawback of this procedure is that it generally involves the transfer of the full state
vector over the slow internode network (compare 1555 GB/s = GPU global memory band-
width [54] and 200 GB/s = InfiniBand bandwidth [29]) each time a non-diagonal gate is
acting on global qubits. As demonstrated by Willsch et al. [27, 30], these network transfers
can account for significant fractions of the average simulation time per quantum gate, since
for large circuits the gates are typically distributed equally among the qubits, hence increas-
ing the number of required MPI transfers approximately linearly in N . In order to reduce the
amount of communication between the MPI processes, the simulation replaces the final back-
transfer of state amplitudes (needed to recover the original distribution across the GPUs) in
favour of a bijective permutation operator σ ∶ {0, . . . ,N − 1} → {σ(0), . . . , σ(N − 1)}. Here,
σ is a 2 × N dimensional matrix, mapping the N qubits ordered sequentially in the first
row to their respective permutated bit-position. Consequently, Eq. 1.17 becomes: σ−1(J) =
[jσ−1(N−1) . . . jσ−1(0)]2. Exchanging a global qubit i at bit-position σ(i) ≥ NL with a local
qubit k at position σ(k) < NL, means to transfer half of the local state vectors between
pairs of MPI processes and swap σ(i) ↔ σ(k). In doing so, the simulation keeps track of
the position of the state amplitudes across the distributed memory spaces by simultaneously
reducing the number of transferred bytes per global operation by a factor of two. Note that
the permutation matrix σ has to be considered in the application of subsequent gates and
measurements, since it might change the bit position these operations are acting on.

A key insight of the strategy depicted above is that the amount of transferred bytes between
MPI processes throughout K global-local-qubit exchanges depends on the number of simul-
taneous swaps. Take for example a non-diagonal two-qubit gate acting on the global qubits
i1 and i2 < i1. When executing the qubit swaps separately, each MPI process R will first
transfer half of its local state vector to the process R ∧ 2i1 , swapping i1 ↔ l1, followed by
a second transfer of half of its altered local amplitudes to the process R ∧ 2i2 , exchanging
i2 ↔ l2. However, when performing both operations simultaneously, each MPI process per-
forms 3 transfers of size 2NL−2 to processes R∧2i1 , R∧2i2 and R∧(2i1 + 2i2) (see appendix E.2),
saving effectively 2NL−2 amplitude transfers. In general, K combined global-local-qubit swaps
decrease the number of exchanged amplitudes from K2NL−1 to (2K − 1)2NL−K . Thus, in or-
der to further reduce the amount of MPI-communication, the simulation uses the prepro-
cessing algorithm depicted in appendix E.1 to determine optimal sequences of combined
global-local-qubit swaps. Note that in general, as K and thus the number of MPI processes
communicating in a group grows, MPI synchronization barriers can significantly impact the
communication time, such that there exists an optimal Kopt [38]. The determination of Kopt

and hence the investigation of the communication performance for various K is, however,
left for future work.

The algorithm proposed here focusses on (1) maximizing the number of simultaneous global-
local qubit swaps and (2) minimizing the total number of individual swap operations in the
circuit. While the former reduces the amount of communicated bytes during the simulation,
the latter reduces the number of inter-GPU synchronization barriers, which can impact the
simulation time, since GPUs generally obey performance fluctuations, forcing some GPUs
to temporarily idle. These fluctuations can only average out if several gate-operations are
computed between the synchronization points, hence the algorithm tries to place the swap
operations as far apart as possible. As depicted in appendix E.1, the algorithm starts by
iterating through all gates in the circuit and investigating their target qubits. Once a gate
Ĝk is found that operates on at least one global qubit, the current position P = k in the
gate-queue is saved and the required global and local qubits are stored in the arrays AG and
AL, respectively. Continuing with the subsequent gates Ĝj>k, their global and local qubits

16

1.2. Quantum circuit simulation

are henceforth also stored in the respective arrays. This process is continued until adding
the target qubits of one gate yields more global qubits in AG than there are local qubits
left in A−1

L = {0, . . . ,N − 1} \ AL. In this case, a swap operation SWAPAG↔A−1
L

is inserted at
position P in the circuit, exchanging all global qubits in AG with the unused local qubits in
A−1

L . Then, the state of the permutation operator σ is updated and the target bits of each
previously visited gate after Ĝk are altered accordingly. Afterwards, AG and AL are cleared,
P is set to the current position of the loop, and the process repeats until all gates in the
queue have been visited. Considering the gate’s local qubits to figure out a set of unused local
qubits is important, as swapping the required global qubits with arbitrary local qubits could
yield situations, where subsequent gates suddenly operate on global qubits, which would
introduce additional SWAP gates into the circuit.

1.2.3.2. Single-Node computation

After having introduced the MPI communication scheme involved in the distributed simu-
lation of the state vector among several compute nodes, this section concerns the update
process of the local state vectors, assuming that all applied gates act exclusively on local
qubits, i.e. on closed sub-spaces of amplitudes that fully reside in one GPU’s global mem-
ory. An important property of this process is that the simulation of a gate operation is
in general memory-bound [24], which can be seen by considering the application of an ar-
bitrary single-qubit gate: To alter one state amplitude, the process involves two complex
multiplications (4 FLOPs) and one complex addition (2 FLOPs) carried out on two entries
of the state vector. On average, one complex double-precision float (16 bytes) has to be
loaded and written back to memory in that process, yielding a computational intensity of
14/32 FLOPs/byte < 1 FLOPs/byte according to the Roofline model [61]. This, in combi-
nation with the high access latencies of global memory (a global memory transaction takes
about 100 times more clock cycles than a double-precision addition), shows that repeated
read/write requests during the update routines to the local state vector can become signifi-
cant performance bottlenecks. As a consequence, optimizations to the memory-management
and the memory access patterns will be discussed in the following. Assuming each CUDA
thread is responsible for updating one pair of amplitudes in case of a single-qubit gate, then
depending on which bit-position i the gate is acting on, the threads in a warp will perform
global memory transactions with a stride of 2i 16 byte words. With respect to section 1.2.2.2,
already for i ≥ 3 the stride exceeds the cache lane size (128 bytes), such that each thread
will be served separate 32-byte memory transactions. This significantly reduces the global
memory bandwidth by at least one order of magnitude, which cannot be compensated for
by the memory latency hiding techniques of the GPU. As a consequence, typically low GPU
utilizations of quantum circuit simulators are obtained [27].

With the purpose of obtaining high performance, SEQCS introduces the shared memory, as
a form of self-managed on-chip cache, into the simulation process in order to significantly
increase the memory access speeds (compare latencies of 10 vs. 800 clock cycles for shared
memory and global memory transfers, respectively) [62]. The implemented approach consid-
ers a partition of the local coefficient space into closed subsets, termed cluster-spaces. This
strategy is similar to the distribution of the full state vector among multiple compute nodes
(see section 1.2.3.1), with the subsets now acting as computation units at CUDA block-level,
such that each cluster-space can be processed independently in parallel in the shared mem-
ory. In order to achieve this, the quantum circuit gets structured into gate clusters during
a preprocessing step. A gate cluster is composed of a closed sequence of consecutive gates,

17

1. Simulation of ideal quantum computing

preserving their original order in the gate-queue, such that each gate only acts on a closed
partition of the set of local qubits. Two properties are important here: (1) the size of the
joint set of target qubits r (cardinality) and (2) the degree of locality c (coalescing), meaning
that the set of qubits {i ∣ i < c} is a subset of the joint set of target qubits. The algorithm
used for assigning the gates to gate clusters is depicted in appendix E.3.

The algorithm traverses through the circuit (beginning with the first gate in the queue) using
two nested loops, aiming to restructure the gate queue such that the number of consecutive
gates forming gate clusters is maximized. Here, the outer loop selects a gate Ĝk, with Ĝk

not being assigned to any cluster formed before, e.g. the first gate in the circuit, and all
prior gates Ĝj<k already belonging to gate clusters. The inner loop (for a fixed Ĝk) then
finds gates that cluster with Ĝk and restructures the circuit accordingly. This is achieved by
designating each qubit as unobstructed (initially) or obstructed, with the latter preventing
gates Ĝj>k acting on it from being moved next to Ĝk. In doing so, the inner loop proceeds
through the gates Ĝi posterior to Ĝk and classifies them as follows: (1) if all target qubits
of Ĝi are unobstructed, then the gate is reordered towards Ĝk to form a larger cluster. (2)
In case at least one target qubit of Ĝi is set obstructed, then Ĝi cannot be reordered and all
its target qubits are marked as obstructed. The scan from Ĝk continues until all qubits are
marked as obstructed or all gates have been scanned. When completed, all reordered gates
together with the initial gate Ĝk from a gate cluster. Then the outer loop continues with
the next gate not in a cluster and resets all qubits as unobstructed. While this procedure
guarantees each gate to be assigned to a cluster, the size of a gate cluster MC is limited by
hardware constraints, potentially causing the inner loop to exit early:

• The amount of shared memory per CUDA block limits the size of the cluster space,
i.e. the size of the amplitude subspace the clustered gates can operate on. On the
NVIDIA A100 GPU, 164 KB of shared memory are available per SM. Distributed
equally among 4 blocks, this allows storing the subspace of up to NC = 11 qubits,
yielding r ≤ 11. In case the inclusion of a gate would yield r > 11, the gate cannot
be reordered and all of its target qubits must be marked as obstructed. Note that if
the algorithm exits and r < 11, the simulator fills up the cluster space by the smallest
unused 11 − r qubits, to ensure that the CUDA kernels are always operating on local
copies of 211 amplitudes. This allows for more optimized gate routines in section 1.2.3.3.

• The amount of cached constant memory is set to 8 KB per SM. This memory is mostly
used to store the sequence of gates and their auxiliary variables, e.g. target qubits and
rotation angles. The algorithm keeps track of these resources required by the gates in
a cluster, such that when the addition of a gate would exceed the available memory,
the gate is again not reordered and its target qubits are set as obstructed.

• In order to utilize the maximum memory bandwidth when reading/writing the cluster-
spaces from/to the global memory, the simulator demands a degree of locality of c ≥
3. This means that the first three qubits of the local state vector are always included in
the cluster’s set of target qubits, even when none of its gates are acting on them. This
is because, accessing 2c = 8 consecutive complex double-precision floats fully utilizes
the cache lane size (128 bytes), such that all global memory requests of the threads in
a warp can be processed using only 4 transactions, which are broadcasted among the
threads.

18

1.2. Quantum circuit simulation

By arranging the gates into clusters operating on closed subsets of the amplitude space,
each gate cluster is simulated using a separate CUDA kernel call spawning 2NL−r CUDA
blocks (with 4 blocks per SM) for processing the subspaces in parallel. As depicted in
Fig. 1.2, in the first stage of the kernel function, the respective cluster-spaces are copied
in parallel into the shared memory while keeping the aforementioned coalescing degree of
2c. This is done, by consecutively assigning the blockID indices B = [bNL−r−1 . . . b0]2 to
the local non-target bit-positions in Eq. 1.17 and the threadID indices T = [tr . . . t0]2 to
the local target bit-positions. For example, in case a gate cluster has a target bit-string
IM = [0 . . . 0 1 0 1 1 0 1 0 1 1 0 1 0 0 1 0 1 1 1]2 (r = 11, c = 3), with each 1 denoting
a local target qubits of the gates in the cluster, thread T in block B will process am-
plitude ψJ , with J = [bNL−r−1 . . . b7 c1 b6 c0 t8 b5 t7 b4 t6 t5 b3 t4 b2 b1 t3 b0 t2 t1 t0]2. Note,
that the counting bits {ci}, traversed in a for-loop, have been introduced, as generally the
size of the cluster-space 2NC exceeds the number of threads in a block. The latter is set to
512 = 29 ≤ 2NC−2 for the A100 GPU, limited by the number of available registers and the
maximum number of supported threads per SM, yielding 1.0 GPU occupancy. Since each
amplitude is given as a complex double-precision float (16 bytes), occupying 4 shared mem-
ory banks, the simulator uses a different placement of the data in the shared memory than
for the global memory. While in the latter the real and imaginary part (spacing 2 banks
each) of the complex numbers are stored sequentially (array of structs), allowing to reduce
the minimal required degree of coalescing of the gate clusters in turn reducing the number of
kernel calls, they are separated in the shared memory into two arrays (struct of arrays). In
doing so, 4-way bank conflicts are reduced to 2-way bank conflicts, when accessing real and
imaginary parts individually during the calculation (see section 1.2.3.3). As a result, the
amplitude J from the above example would be stored at the shared memory locations T
and T +2NC , concerning its real and imaginary part, respectively. After the amplitudes have
been transferred, the gates of the cluster are computed sequentially on the local copies in
the shared memory. Here, each thread is in charge of computing the transformation of 22

amplitudes. Note that the updates are carried out in-place and block-level synchronizations
are required after each gate operation. The latter is necessary, since the gates in a cluster
might not act on disjoint qubit sets. Finally, the amplitudes are copied back into the global
memory, by reversing the aforementioned process, and the next gate cluster gets simulated
using another kernel call. The process is illustrated in Fig. E.8. Note that before executing
the kernel function, the properties about the cluster and the circuit (e.g. number of qubits,
number of gates), the gate-queue, given as an 8 bit unsigned integer array, and the gate
variables, using a double-precision float array, are copied into the constant memory.

A key insight of the above process is that the order of the local qubits, i.e. the arrangement of
the local state amplitudes, differs between the shared memory and the global memory. This
is because the amplitudes ψJ , corresponding to the cluster’s target-space, are distributed in
the shared memory according to the threadIDs. Since the latter are not necessarily assigned
to the first 11 bit-positions in J , but can be arbitrarily distributed among the NL bits, the
NL qubits in the shared memory array must not correspond to the first NL qubits in the
global memory array. In fact, by extracting the cluster-space from the local state-vector, the
bit-positions of all target-qubits {li} are effectively shifted to the 11 right most bits in the
amplitude index J , while the remaining non-target qubits {pi} are sifted left to the final
NL − 11 bits (see Eq. 1.18), with the former and the latter being indexed by the threadIDs
and blockIDs, respectively. Regarding the execution of a gate, this transformation is taken
into account during the transfer of the gate variables into the constant memory by altering
the respective target bits:

19

1. Simulation of ideal quantum computing

J = [. . . p3 p2 l2 p1 l1 l0 p0]2
´¹¹¹¸¹¹¶

Global memory

Ð→ J = [

blockID
³¹¹·¹¹µ
pNL−NS−1 . . . p0

threadID
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
lNS−1 . . . l0]2

´¹¹¹¸¹¹¹¶
Shared memory

. (1.18)

1.2.3.3. Gate implementations

Using the GPU’s shared memory to perform the gate operations in-place on local copies of
the state vector directly in the fast on-chip cache drastically reduces memory access latencies,
hence accelerating the memory-bound simulation. However, this strategy does not change the
overall number of memory transactions required for each gate evaluation. Thus, in order to
increase the computational intensity further, SEQCS introduces the concept of gate groups,
referring to the combined execution of multiple single- and two-qubit gates spread across
different qubits. Consider for example the application of two Hadamard gates H0 and H1
(see Eq. 1.11) on qubits 0 and 1, respectively. Performing the gate operations separately on
the N -qubit register, yields 2N read and write memory request of complex double-precision
floats for each gate, as H0 (H1) alters the values of 2N−1 state amplitude pairs, ψjN−1 ... j1 0/1
(ψjN−1 ... j2 0/1 j0). In doing so, every state amplitude is accessed and modified two times,
with a total of 2N+1 read/write memory transactions. Combining the gate execution, on
the other hand, i.e. considering the tensor-product H0 ⊗H1, the update is organized into
2N−2 tuples of four amplitudes, ψjN−1 ... b2 0/1 0/1, such that each state amplitude must be
accessed only once. This reduces the total number of memory traversals and thus increases the
computational intensity by a factor of two, at the expense of an increased register footprint.

Combining the execution of multiple gates is a common technique used in prior quantum
circuit simulators, which typically apply one of the following strategies: (1) Clustering adja-
cent single-qubit gates acting on the same qubit [39]. While delivering good performance on
specific kinds of random circuits (e.g. used for demonstrating quantum supremacy [21]), this
approach is generally limited by a frequent use of multi-qubit gates, yielding gate-groups
of low cardinality in case of real-world quantum circuits (e.g. quantum optimization algo-
rithms). (2) Grouping arbitrary gates operating on a closed subset of up to q qubits [24],
by calculating the final tensor-product matrix of size 2q × 2q as mentioned in the above ex-
ample. This ansatz is applicable to real-world quantum circuits, however, generally limited
to q ≤ 5 due to the exponentially growing size of the update matrix, as 22q matrix elements
must be stored in the registers. A key insight of the second approach is that by grouping
only gates of the same type, e.g. H gates are grouped separately from T gates, the simulator
can exploit the regular structure of the gate matrices, such that the update routines of the
amplitudes can be separated into a finite number of instruction branches. Thus, no com-
putationally expensive matrix-matrix multiplications are required and generally arbitrary
numbers of gates (g ≤ N) can be combined. This strategy is motivated by the observation
that real-world quantum circuits are often constructed in layers [12], such that the same gate
types, e.g. rotation gates, are applied simultaneously to multiple qubits (see e.g. Fig. B.1 in
appendix B.1).

With respect to the separation of the quantum circuit into gate clusters, as introduced in
section 1.2.3.2, the simulator uses a third preprocessing algorithm to group the execution
of gates of the same kind within each cluster. This is done, by utilizing the fact that the
order in which diagonal gates as well as non-diagonal gates acting on different qubits are
applied does not alter the final quantum state. The algorithm depicted in appendix E.4 is

20

1.2. Quantum circuit simulation

similar to the one in appendix E.3, featuring two nested loops to iterate through the gates in
a cluster. Here, the outer loop selects a gate Ĝk which has not been grouped yet. The inner
loop then traverses through the gates Ĝj>k, trying to reorder all gates of the same type as Ĝk,
i.e. type(Ĝk) = type(Ĝi), next to it in the queue. This is achieved by designating each qubit
as either unobstructed (initially), partially-obstructed or obstructed, with partially-obstructed
qubits preventing only non-diagonal gates acting on them to be shifted in the queue, while
obstructed qubits prohibit any gate reordering when operating on them. In case the inner
loop encounters a gate Ĝi, with type(Ĝk) ≠ type(Ĝi), all its target qubits are marked as
partially-obstructed, if Ĝi is diagonal, or as obstructed, if Ĝi is non-diagonal. On the other
hand, if type(Ĝk) = type(Ĝi) and none of the target qubits of the non-diagonal (diagonal)
gate Ĝi are obstructed (or partially-obstructed), Ĝi gets reordered to position k + 1 in the
queue and is marked as grouped. Otherwise, its target qubits are also labelled as obstructed
(partially-obstructed). The inner loop continues until all qubits have been either scanned
or are no longer marked as unobstructed. Once completed, all reordered gates form a new
gate-group and the outer loop continues with the next gate not in a group, by resetting
all qubits as unobstructed. Applying this algorithm once to the circuit, however, does not
produce optimal combined gate-groups. Take for example the circuit: T0 H1 T1 H2 T2. Here,
the algorithm suggests three groups: {T0}, {H1,H2} and {T1, T2}. Thus, it fails to combine
T0 with T1 and T2. To solve this issue, the algorithm is executed twice, first with both nested
loops iterating in positive order, followed by a traversal in negative order through the gate-
queue. In doing so, the aforementioned circuit becomes: {H1,H2} and {T0, T1, T2}. A result
of this process is shown in Fig. B.3 in appendix B.1 by the grouping of Hadamard and Rx

gates, as well as the combined execution of the diagonal ÛC transformation.

The process of combining the obtained set of reordered gates into gate-groups of sizes MG

depends largely on the respective gate types and is constrained by the underlying hardware
(e.g. number of registers per thread). To achieve maximum performance in the evaluation of
every implemented gate (see appendix A), the gates are separated into three classes featuring
specialized update kernels each. Moreover, SEQCS has implemented multiple versions of
these kernels, which are dedicated to different sizes NC of the cluster-space. In the following,
the general strategies used for the three gate classes are depicted in the context of NC = 11
and 29 threads per block.

Single-qubit diagonal gates: This gate-class concerns operations that act diagonally on
the state space of a single qubit, performing a rotation of the quantum state around the
computational axis in the Bloch sphere (see section 1.1.2). Among the general rotation gate
Rz (γ), the simulator implements the Z, S and T gates, denoting fixed rotations by π,
π/2 and π/4, respectively. These gates feature the distinctive property that the state am-
plitudes ψJ are altered without mixing or permuting them, allowing to evaluate diagonal
gate-groups by traversing the entire state vector only once and processing each amplitude
independently. Thus, using any assignment between threads and amplitudes, the contribu-
tions of each gate can be aggregated locally, such that diagonal gates acting on any subsets
of qubits can be grouped, including global qubits that are spread across multiple GPUs. The
simulator uses 64 bit integer-masks IM to encode the target qubits of gates, with an 1 at
bit-position k denoting that the respective gate is acting on qubit k. Regarding diagonal
gate-groups, IGroup

M is given by combining the individual gate bit masks I i
M using the bit-

wise OR operator ∣, i.e. IGroup
M = I0

M ∣ I1
M ∣ . . . ∣ I

MG−1
M . Computation wise, IM is handled

as a gate parameter, hence stored in the constant memory, and refers to the qubit arrange-
ment given in the shared memory (see Eq. 1.18). Consequently, the initial 11 bits denote

21

1. Simulation of ideal quantum computing

the cluster-space, the subsequent NL −11 bits refer to the remaining local qubits distributed
among the CUDA blocks, and the final NG bits correspond to the global qubits distributed
among the compute nodes (see Eq. 1.19).

Given an amplitude ψJ and a gate distribution IGroup
M , the update routine of the gate-group

can easily be determined using two single-cycle GPU instructions: l = __popcll (IGroup
M & J),

with __popcll returning the number of set bits in a 64 bit integer [55]. Using the fact that
global phases of quantum states are unobservable, such that each bit in IGroup

M contributes
either a factor of 1 (∣0⟩ state) or a factor of exp(iα) (∣1⟩ state), l denotes the number of gates
that act non-trivially on ψJ , hence ψJ → ψJ ⋅ exp(iα ⋅ l). Since Z2 = I, (S4 = I, T 8 = I) l can
further be taken mod-2 (mod-4, mod-8), i.e. l → l & 1 (l & 3, l & 7), yielding a closed set of
rescaling factors: exp(iα ⋅ l) ∈ {±1} ({±1,±i}, {±1,±i, (±1 ± i)/

√
2}). While for the combined

execution of Z gates, ψJ must only be altered if IGroup
M & J has positive parity, 3 and 7

different update routines have to be considered for grouped S and T gates, respectively. In
general, this can cause significant warp divergence, as threads of the same warp operate on
different control paths. To reduce the impact of diverging instruction trees, all load and store
operations are executed unbranched and the calculations are structured, such that expensive
float-float multiplications, e.g. 1/

√
2 for multiple T gates, are done simultaneously by all

concerned threads. Regarding the Rz (γ) gate, where the simulation allows different rotation
angles γ throughout the group, no closed set of rescaling factors can be determined at compile
time, hence the individual rotation angles must be loaded and aggregated from constant
memory. Here, the simulation uses the identities sin(x + y) = sin(x) cos(y) + cos(x) sin(y)
and cos(x + y) = cos(x) cos(y) − sin(x) sin(y), in order to shift the calculation of expensive
trigonometric functions to the CPU. Hence, by storing cos(γ/2) and sin(γ/2) in the constant
memory and using fast-multiply-add GPU instructions [55], the aggregated effect of multiple
Rz gates can be evaluated efficiently.

Despite the computation of the altered amplitudes, the challenge in simulating diagonal
single-qubit gates lies in the assignment of the threads to the amplitudes as well as in the
order in which the latter are computed. Take for example a group of Z gate with:

IGroup
M = [1 . . . 0

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
Global qubits

0 . . . 1
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

Block qubits

0 0 1 0 0 1 0 1 1 0 1
´¹¹¸¹¹¹¶

Cluster qubits

]2, (1.19)

J = [rNG−1 . . . r0 bNL−NS−1 . . . b0 c1 c0 t8 t7 t6 t5 t4 t3 t2 t1 t0]2 (1.20)
= [rNG−1 . . . r0 bNL−NS−1 . . . b0 t2 t0 t8 t7 t6 t5 t4 t3 c1 t1 c0]2 . (1.21)

Equation 1.20 depicts a trivial assignment of the threads to the qubits, by distributing the
threadID bit string T consecutively among the first 9 bit positions. Here, R = [rNG−1 . . . r0]2
denotes the MPI rank, and ci refer to additional counting bits that are traversed in the
inverse-gray code order, i.e [c0 c1]2 = [00]2 → [01]2 → [11]2 → [10]2. A major issue of the
above assignment of threads and amplitudes is that it causes half of all threads in a warp
to idle during the evaluation of the gate-group, since a non-trivial update requires positive
parity of IGroup

M & J . For a given configuration [c0 c1]2, the latter is only fulfilled by half of
the threads in a warp, hence reducing the effective occupancy by a factor of two. To improve
the load-balance, the simulator proposes a custom assignment, in order to synchronize the
computations:

22

1.2. Quantum circuit simulation

• As a first step, the threadID indices get reordered, such that both counting bits are
assigned to target bits in IGroup

M . This is done, by swapping c0 and c1 with the threadID
indices that occupy the positions of the first two target qubits (here t0 and t2), yielding
Eq. 1.21.

• The above assignment ensures improved load balance, with all threads performing two
updates. However, in case the counting bits are now located within the first 5 bits
(denoting the shared memory bank of ψJ), traversing the counting bits in identical
sequences among all threads will yield a 4-way bank conflict, when accessing the state
amplitudes in the shared memory. To solve this problem, the threads will start counting
from different positions in the inverse-gray code, by initializing c0 and c1 with t0 and
t2, respectively.

• Concerning the Z gate, an additional optimization is used to synchronize the calcula-
tions among the threads within a warp. This is motivated by the fact, that for each
configuration of counting bits, always one half of the threads in a warp will execute
an update, while the other half will idle, with both halves alternating in the parity
of [c0 c1]2. To synchronize the execution of the threads, the simulation determines the
first target qubit in IGroup

M beyond the first five qubits, and sets its bit in J to 1 (0)
if c0 (c1) is initialized to 0 (1). This effectively corresponds to an exchange of threads
between pairs of warps, such that always all threads will either perform an update or
not, given a configuration of [c0 c1]2.

Single-qubit non-diagonal gates: Non-diagonal gates operating on a single-qubit Hilbert
space denote rotations of the state vector around an axis that is tilted from the computational
axis, yielding mixing and permutation of the computational basis states. Among others, the
simulation implements the Hadamard H, the Rx (γ) and the Ry (γ) gates. In contrast to
the aforementioned diagonal gates, the combined execution of non-diagonal gates is limited
to pairs. On the one hand, this is due to the amount of parallelism in the kernels. Fusing q
non-diagonal gates reduces the number of independent target-spaces, distributed among the
threads, by a factor of 2q. Since for the A100 GPU, the shared memory is eight times larger
than the proposed block size, combining more than three non-diagonal gates reduces the
GPU’s occupancy and thus the ability to hide memory latencies, as the number of target-
spaces residing on each SM undercuts the number of available threads. On the other hand, the
computation of q grouped gates in general requires 22q matrix elements and thus 2q complex
amplitudes to be stored in the registers. Since the register count per thread is set to 32, with
each complex double-precision amplitude occupying 4 registers, q is limited to 2 considering
that registers are also needed to store intermediate results of the calculations. Note that
register spilling into global memory occurs for q ≥ 3.

Analogously to the simulation of diagonal gates, bit masks IGroup
M are used to encode the

target qubits of the pair executions. Here, 32 bit integers are sufficient to store IGroup
M , as

non-diagonal gates can only be applied to local qubits with NL < 32. Moreover, the threadID
indices are distributed similarly to Eq. 1.21 among the qubits, to ensure synchronized calcu-
lations and to prevent shared memory bank-conflicts. For example, a pair of Hadamard gates
applied to the first two qubits, yields IGroup

M = [. . . 0 0 1 1]2 and J = [. . . t1 t0 c1 c0]2. As
mentioned before, by initializing the counting bits c0 and c1 at different positions in the
inverse-gray code based on the state of t0 and t1, the threads will access the four state am-
plitudes belonging to the same target-space in a different order. While for diagonal gates

23

1. Simulation of ideal quantum computing

these amplitudes can be processed independently, regarding non-diagonal gates the compu-
tation of each amplitude generally requires all 2NG amplitudes of the target-space. To prevent
branch divergences during the expensive memory transactions, SEQCS stores these ampli-
tudes among the variables Vkl in the order in which they are accessed. As a consequence, the
threads are separated into four groups, with each group featuring a different permutation
of the amplitudes ψij among the variables Vkl. In order to compute the output amplitudes
in parallel, a naive strategy could be to reorder the data among the variables. Afterward,
each thread must first compute all four altered amplitudes, store them in the registers and
finally write them back into the shared memory in the order in which they were initially
loaded. Again, the latter is done to prevent bank-conflicts. Unfortunately, however, this ap-
proach is prevented by the number of available registers per thread, yielding either register
spilling or a sequential processing of the four thread groups, hence significantly increas-
ing the simulation time. To solve this issue, SEQCS proposes an out-of-order computation
scheme, by utilizing similarities in the calculations of ψij and their permutations among the
variables Vkl. In doing so, carefully placed negations of some variables are sufficient to di-
rect the different operations, causing only neglectable branch divergences, while preventing
bank-conflicts. A detailed description of this strategy can be found in appendix E.5. Note
that due to the small number of registers, the real and imaginary parts of the amplitudes
are processed seperately.

An exception from the above depicted process is given for the X and Y gate, which feature a
special symmetry along the off-diagonal axis, such that gate executions acting on up to NS−1
qubits can be combined. This is because, the involved update routines operate exclusively
on two-dimensional subsets of the state space, since both gates perform permutations of
the amplitudes in the state vector, e.g. applying two X gates on qubits 0 and 1, swaps
the memory locations of ψi,k ↔ ψ∼i,∼k. Similarly to other non-diagonal gates, Eq. 1.21 is
used to distribute the threads among the qubits, yielding again an out-of-order computation
scheme. While for the X gate, only the respective amplitudes need to be swapped, the Y gate
additionally requests a phase shift, i.e. ψJ → eiαJ ⋅ψJ . Given the original amplitude index J ,
αJ can be computed via: αJ = π/2 ⋅ [__popcll (MG) & 7 + 2 ∗ (__popcll (MG & J) & 1)].

Two-qubit control gates: In order to achieve universal quantum computation, the simu-
lator also implements a series of two-qubit control gates, including the CZ and the CNOT
gates (see Eq. 1.12) as well as a controlled rotation gate U (k). These gates act on a four
dimensional subspace of the state space, with the control qubit conditioning the application
of a single-qubit gate on the target qubit. While a combined evaluation of controlled gates
acting on disjoint qubit pairs could be realized similarly to the aforementioned single-qubit
gates, a key insight in the usage of these gate class in real-world quantum algorithms is that
adjacent controlled gates typically operate on non-disjoint sets of qubits. For example, the
quantum Fourier transformation applies several U (k) gates to the same qubit conditioned
on the computational state of the remaining qubits [31]. As a consequence, SEQCS proposes
a new encoding strategy, which allows combining controlled-operations both vertically and
horizontally in the circuit, such that the aforementioned U (k)-clusters can be simulated via
a single gate-group. In contrast to the previous encodings, the size of the gate-groups is not
limited, with the only restriction being that the sets of control and target qubits must be
disjoint, and the latter are residing in the shared memory in case the conditioned single qubit
gates are non-diagonal.

Dealing with large sets of controlled gates, the encoding uses (up to N) 64 bit integer masks
Ik

M capturing the effects of multiple gates. The bit masks are assigned to each control qubit k,

24

1.3. Benchmarks

such that each set bit in Ik
M denotes a target qubit that is controlled by the computational

state of qubit k. Note that in case the controlled gate is diagonal (e.g. CZ gate) a bit
mask is assigned to both the target and control qubit, as they are interchangeably. As an
example, consider the gate-group {CNOT0,3,CNOT1,3,CNOT0,4,CNOT2,4}, yielding the
three bit masks: I0

M = [1 1 0 0 0]2, I1
M = [0 1 0 0 0]2 and I2

M = [1 0 0 0 0]2. Using Eq. 1.21
to distribute the threads among the qubits, by counting in the first two controlled bits to
improve load balance and prevent bank conflicts, the permutation of an amplitude ψJ can be
determined by iterating through all set bits k in J and aggregating the transformations J ′ →
J ′ & Ik

M (with J ′ = J initially), in case qubit k is a control qubit. Finally, ψJ and ψJ ′ must be
swapped. A main problem of this procedure is that there is not enough register space available
to store the full set of bit masks. Thus, each time an amplitude ψJ is processed, all bit masks
must be loaded from constant memory again, causing significant performance penalties in
case of numerous control qubits. Fortunately, however, the process can be optimized by
exploiting the reflected-gray code used to traverse the counting bits c0 and c1, causing only
a single bit in J to flip, when going from one computed amplitude to the next. This allows
reusing and incrementally updating the state J ′ from the previous amplitude by loading
only a single bit mask each time, hence reducing the complexity of amplitude updates from
O(N) to O(1) memory accesses after initialization. This becomes especially important in
the context of controlled rotation gates, as it significantly decreases the number of memory
transactions to the individual rotation angles.

1.3. Benchmarks
In section 1.2 the implementation of the quantum circuit simulator SEQCS has been dis-
cussed in detail. With respect to the various performance bottlenecks of GPU-based exe-
cutions, novel strategies have been proposed to increase the load-balance and improve the
memory management of the simulation in order to reduce memory access latencies and in-
crease the overall GPU utilization (both shown to limit the performance of prior quantum
circuit simulators). To verify the effectiveness of the proposed ideas, this section presents
benchmark results regarding the MPI-communication scheme, the usage of shared memory
and the implementation of the individual gate kernels. In doing so, SEQCS will be compared
against the Jülich universal quantum computer simulator (JUQCS), a massively parallel
simulator written in Fortran, that has been used to study quantum algorithms, such as
quantum annealing and the QAOA, to demonstrate Google’s quantum supremacy, as well as
to benchmark internode communication networks in the past [27, 38, 63]. Recently, a GPU-
accelerated version of JUQCS, termed JUQCS-G [30], has been presented, using CUDA and
CUDA-aware MPI to achieve an up to 49 times faster execution of the quantum circuits
investigated by Willsch et al.. Note that JUQCS-G does not implement any circuit anal-
ysis/optimization strategies, e.g. gate reordering and combined gate execution, nor makes
use of the shared memory. Hence, it allows ranking the success of the proposed optimization
strategies.

All experiments are conducted on the JUWELS Booster supercomputer [29], using between
1 and 32 NVIDIA A100 GPUs to simulate circuits of up to 36 qubits. In doing so, sec-
tion 1.3.1 concerns the MPI-communication scheme, section 1.3.2 focusses on the use of
shared memory within the kernels, and section 1.3.3 discusses the effects of combined gate
executions. These experiments are conducted on benchmark circuits, composed of l layers
of single qubit gates, with each layer executing one gate on each of the N qubits. Using
multiple gate repetitions, i.e. l≫ 1, makes potential initialization times of the GPU/CUDA

25

1. Simulation of ideal quantum computing

and MPI negligible. Regarding both simulators, SEQCS and JUQCS-G, the elapsed times of
the MPI communication TMP I and the gate execution TGates are tracked separately. While
these investigations only involve artificial circuits, specially tuned to study one aspect of
the simulation, in section 1.3.4 both simulators are also applied to real-world quantum al-
gorithms, like the quantum Fourier transformation and the QAOA (see section 2.2.2). Note
that throughout all experiments, gate substitution strategies, e.g. replacing pairs of unitary
hermitian gates acting on the same qubit by an identity operation (a technique generally
used by SEQCS), are deactivated.

1.3.1. MPI-communication scheme

Figure 1.3.: The figure depicts the total MPI communication time TMP I and the total gate
execution time TGates obtained by SEQCS and JUQCS-G for the Hadamard
benchmark circuit (l = 20, N ∈ {32,33,34,35,36}). The data shown is normal-
ized with respect to the 32 qubit circuit, by multiplying TMP I and TGates with
32 /N .

The investigation of the internode communication, i.e. the execution speed of global gate
operations, is conducted on Hadamard benchmark circuits using l = 20 layers acting on qubit
registers of sizes N ∈ {32,33,34,35,36}. The simulations involve 2,4,8,16 and 32 GPUs,
with each A100 GPU operating on a local state vector of 31 qubits, respectively. Since the
Hadamard gate is a non-diagonal single qubit gate, both simulators must perform global-
local qubit exchanges in order to compute the gate operations on either of the N − 31 global
qubits. The reason for including multiple layers (l ≫ 1) and also applying gates to local
qubits is to model a realistic situation, where gates can act on both qubits in an exchanged
pair. As a consequence, the scheduling order of the gates has a signifiant impact on the
overall number of qubit transfers and hence the simulation time. Note that in case the gates
are only applied to the initial global qubits, arbitrary numbers of layers can be computed
using only N − 31 global-local qubit exchanges.

26

1.3. Benchmarks

Figure 1.3 depicts the simulation times TMP I and TGates obtained for the five benchmark
circuits. Note that the presented data is normalized with respect to the 32 qubit circuit, tak-
ing into account that the number of executed gates increases linearly in N . Regarding both
simulators, the figure reveals a dependency of the MPI communication time on the num-
ber of involved GPUs, while, on the other hand, the gate execution time remains constant
throughout the runs with elapsed times of approximately 2.0 s (SEQCS) and 16.2 s (JUQCS-
G). These observations fit to the results obtained by Willsch et al. [30] and can be explained
by the distribution of the computational work among the processing threads. Thus, as the
number of global qubits increases, so does the fraction of gates in the circuit that demand
a global-local qubit exchange during their evaluation. Therefore, an increasing number of
global gates causes more data to be transferred through the network (despite the normal-
ization), yielding a dependency of TMP I on NG. Note that TMP I is additionally affected by
the increasing number of MPI synchronization barriers required after each qubit exchange,
which grows proportional to NG. In contrast to this, TGates remains constant for both sim-
ulators, since the exponentially increasing number of state amplitudes (2N), which must be
altered during the execution of each gate, is distributed equally among the also exponentially
growing number of GPUs. As a consequence, the computational work of each GPU remains
independent of the number of global qubits in the circuit, and so does TGates, yielding an
ideal weak scaling.

Comparing the execution times of the two simulators, SEQCS performs both the simulation
of the gate operations and the MPI communication significantly faster than JUQCS-G, with
speed-ups of ≈ 8.5 for the former and speed-ups ranging between ≈ 1.8 and ≈ 2.5 for the lat-
ter. A detailed investigation concerning TGates will be given in the sections 1.3.2 and 1.3.3. Fo-
cussing on TMP I in the following, the faster execution of SEQCS can be traced back to the
order in which the gates in the clusters are scheduled for evaluation. While JUQCS-G com-
putes the circuits gate-wise, yielding one global-local qubit exchange for each global gate
in each layer, i.e. (N − 31) ⋅ l exchanges in total, SEQCS uses the preprocessing algorithm
depicted in appendix E.1 to rearrange the gate operations and minimize the amount of MPI
communication necessary. In doing so, SEQCS processes the Hadamard benchmark qubit-
wise, i.e. simulating all l gates acting on one qubit consecutively before continuing with the
next qubit. Consequently, global gates are executed only after all local gates have been pro-
cessed, such that N − 31 global-local qubit exchanges are sufficient. Although in real-world
quantum circuits it is often not possible to process all local and global gates separately as
done by SEQCS here, this experiment demonstrates the importance of circuit restructuring
regarding the MPI communication time.

In order to exclude the influence of the gate scheduling order from the comparison, Fig. 1.4
depicts TMP I (not normalized) obtained from the first layers of the benchmark circuits only,
This allows investigating the differences in the implementations of the individual global-local
qubit exchanges. Considering the case of a single qubit exchange, JUQCS-G manages a ≈ 10
times faster transfer of the state amplitudes then SEQCS. As both simulators communi-
cate the same number of bytes (2N−1 amplitudes) between pairs of GPUs in this case, this
observation reveals that JUQCS-G features a significantly faster MPI implementation then
SEQCS. Most likely this is caused by the extensive use of special MPI data types by SEQCS,
such as MPI_Type_vector and MPI_Type_indexed, which seem to be not optimized for
the exchange of large memory segments. Moreover, JUQCS-G uses self-managed buffers for
the data transfers, while SEQCS leaves this job to the MPI, which might cause expensive
Device-Host memory transfers. However, further investigations are needed here. Despite the
slower byte-transfers, SEQCS shows a significantly better scaling of TMP I in the number

27

1. Simulation of ideal quantum computing

Figure 1.4.: The figure depicts the MPI communication time for 1 to 5 consecutive global-
local qubit exchanges obtained by SEQCS and JUQCS-G. The data corresponds
to TMP I when executing only a single layer of the Hadamard benchmarks.

of consecutive global-local qubit exchanges than JUQCS-G. Here, the latter scales linearly,
taking approximately 260 ms for an intranode exchange, i.e. pairs of communicating GPUs
reside on the same compute node (see 1 and 2 qubit exchanges), via CUDA asynchronous
copy and 1080 ms for an internode exchange using CUDA-aware MPI, yielding an ideal weak
scaling. SEQCS, on the other hand, is able to combine these qubit transfers, hence reducing
the amount of memory that must be communicated through the network. As a result, TMP I

seems to approach a saturation elapsed time of approximately 14 s, such that the speed-up
of JUQCS-G monotonically shrinks as more exchanges can be executed simultaneously. Al-
though, JUQCS-G implements a similar strategy of joining MPI calls, it is only applied to
certain measurement tasks, where the communication pattern can be determined at compile-
time. The conducted experiments, however, demonstrate that analysing the quantum circuit
and rearranging the execution order to combine qubit transfers can significantly improve the
simulation times by reducing the amount of MPI communication.

1.3.2. Shared memory

In section 1.2.3.2 the use of shared-memory, i.e. user-managed L1-cache, in the kernel ex-
ecutions was proposed in order to reduce memory access latencies to the individual state
amplitudes. The influence of this strategy onto the average execution time per quantum
gate TGate = TGates / (N ⋅ l) is depicted in Fig. 1.5 by applying both simulators to a l = 128
layered Hadamard benchmark circuit. Here, N = 31 is chosen, such that the full circuit can
be evaluated using a single GPU, hence excluding the effects of the MPI communication
seen in section 1.3.1. Regarding SEQCS, the combined execution of H-pairs is deactivated,
resulting in similar update routines of the state amplitudes as in JUQCS-G. Moreover, the
gate-cluster size, i.e. the number of gates that are computed within a single kernel call in
the shared memory, is artificially restricted to 1,2,4,8,16,32 and 128 gates, with the lat-

28

1.3. Benchmarks

ter corresponding to the maximum cluster-size limited by the amount of constant memory
available on the SMs. Note that the total number of gates (N ⋅ l) can be evenly divided by
all investigated cluster-sizes.

Figure 1.5.: The figure depicts the average gate execution time TGate = TGates / (N ⋅ l)
obtained by SEQCS and JUQCS-G for the Hadamard benchmark circuit
(l = 128, N = 31). Regarding SEQCS, the gate-group size is artificially set to
1 and the cluster size is limited to {1,2,4,8,16,32,128} gates. The standard
deviation of TGate is 0.62 ms (JUQCS-G) and ≤ 0.01 ms (SEQCS).

Using JUQCS-G the Hadamard circuit is simulated with an average execution time per gate
of TGate = 50.00 ms. SEQCS achieves a similar time of TGate = 50.28 ms if the gate-cluster
size is artificially limited to a single gate. In this case, each Hadamard gate is simulated
via a separate kernel call, yielding a similar update strategy as implemented in JUQCS-
G. However, this prohibits the reuse of previously loaded state amplitudes residing in the
shared memory, since each amplitude is traversed only once in each kernel call. Therefore,
extracting the cluster-space from global memory into the shared memory for operation in-
troduces overhead into the computation, as in addition to a single load and store instruction
into the global memory, SEQCS requires each thread to additionally perform one read and
two write requests into the shared memory. Although this could potentially increase the
simulation time, Fig. 1.5 demonstrates that the warp scheduler is able to hide these addi-
tional shared memory accesses, which are approximately one order of magnitude faster than
global memory transactions, by performing them during the global memory accesses of other
threads. This is possible, since the performance of the update kernel is generally restricted
by the latter. Moreover, recent Ampere GPUs support direct transfers between the global
memory and the shared memory without involving registers [54], such that the number of
write operations in the shared memory is reduced to one by each thread. As a result, no
significant difference in TGate is found between the simulators, demonstrating that even in
the most unfavourable case the overhead associated with the use of shared memory does not
cause a significant performance penalty.

29

1. Simulation of ideal quantum computing

Next, focussing on gate clusters featuring 2, 4 and 8 gates, yielding average execution times
of 25.09 ms, 12.51 ms and 6.30 ms, respectively, a close-to ideal strong scaling of TGate is
obtained, such that T̄Gate decreases inversely proportional to the cluster size MC . This can
be explained by state amplitude caching, such that by doubling the number of gates in
a cluster, half of the prior global memory transactions are now performed in the shared
memory. Since this decrease in the simulation time is entirely based on the differences in
the access latencies between the two memory spaces, increasing the cluster-size beyond 8
gates reveals a saturation of TGate at approximately 4 ms. This is because, the number of
global memory transactions per cluster remains constant, while the number of shared memory
accesses grows linearly in the number of included gates. Thus, there exists a cluster size, from
which on the warp scheduler is no longer able to hide the faster shared memory requests
during the slower global memory accesses. If this is the case, the kernel becomes limited by the
access speeds of the shared memory, such that an increase of NC , as long as the total number
of kernel calls is not altered, does not improve the simulation performance. This means, that
already for 8 gates in each cluster a speed-up compared to the single gate execution of
≈ 8 is achieved, which is close to the maximum speed-up of ≈ 12.7 (MC = 128). Hence,
this experiment demonstrates the success of self-managed amplitude caching in the shared
memory also for small and heavily connected circuits, allowing only small gate clusters.

1.3.3. Combined gate execution
1.3.3.1. Single qubit diagonal gates

Continuing with the analysis of combined gate executions, both simulators are applied to
N = 31 qubit benchmark circuits composed of l = 24 layers of Z, S and T gates. In addition
to these fixed rotation gates, the RZ (γ) gate, supporting arbitrary rotations around the
computational axis by γ, is also benchmarked in order to study the effects of repeated
constant memory accesses on TGate. Note that γ = π/4 is chosen, hence each RZ gate simulates
the effects of a T gate. In doing so, Fig. 1.6a and Fig. 1.6b depict the average execution times
per gate TGate. Concerning SEQCS, the simulations are conducted with artificial limitations
to the gate-group size set to 1, 2, 4, 8 and N gates.

Focussing on the fixed rotation gates first, JUQCS-G takes on average approximately TGate =
50.00 ms for the simulation of each gate, with no significant difference between the three
gate types (Z, S and T gate). Relating this to the computation of a Hadamard gate in
section 1.3.2, TGate ≈ 50.00 ms seems to resemble the average execution time of any quan-
tum gate in JUQCS-G (see also section 1.3.3.2). Since the performance of the respective
update kernels is generally limited by the amount of global memory accesses involved, this
observation suggests that JUQCS-G fails to exploit the favourable structure of the diagonal
update matrices in question here. As quantum mechanics prohibits the observation of global
phase factors, the evaluation of the Z, S and T gates can be conducted, such that non-
trivial updates must only be performed on computational basis states ∣1⟩, hence reducing
the number of memory transactions by a factor of two. Consequently, one would expect two
times faster gate executions, as can be seen for SEQCS in case of NG = 1, i.e. gate-groups of
size one. Here, the average execution time lies between 2.31 ms and 2.41 ms, with the Z gate
being simulated the fastest and the T taking the longest computation time. Thus, the sim-
ulation of these diagonal gates is executed approximately twice as fast as the simulation of
the non-diagonal Hadamard gate in section 1.3.2 using MC = 31. Hence, by neglecting global
phase factors and caching the state amplitudes, SEQCS performs the single-gate evaluation
≈ 21 times faster than JUQCS-G.

30

1.3. Benchmarks

(a) Z and S benchmarks

(b) RZ and T benchmarks

Figure 1.6.: The figures depict the average gate execution time TGate = TGates / (N ⋅ l)
obtained by SEQCS and JUQCS-G for the Z, S, T and RZ benchmark cir-
cuits (l = 24, N = 31). Regarding SEQCS, the gate group size is limited to
{1,2,4,8,N}. The standard deviation of TGate remains consistent for all gates
with ≤ 0.01 ms (JUQCS-G) and ≤ 0.01 ms (SEQCS)

31

1. Simulation of ideal quantum computing

Continuing with the combined execution of these gates, SEQCS takes 1.95 ms (Z), 2.19 ms
(S) and 2.33 ms (T) for the simulation of gate-groups of size two. The fact that the speed-up
with respect to the single-gate execution is significantly below two, indicates that the kernels
used for the combined gate executions involve additional computational overhead, e.g. due
to the calculation of the thread to amplitude assignment and the aggregation of the effects
of multiple gates altering one amplitude. However, since this overhead is independent of the
group size, combining the execution of 4 and 8 gates shows again the expected close-to ideal
strong scaling, with TGate decreasing inversely proportional to MG. Going beyond 8 gates,
TGate saturates at 0.15 ms (Z), 0.22 ms (S) and 0.36 ms (T), yielding maximal speed-ups
compared to the single gate executions of SEQCS (JUQCS-G) of approximately 15 (329),
10 (228), and 6 (138), respectively. A key insight into these saturations is that a Z gate can
generally be simulated faster than an S gate, which in turn can be computed faster than a
T gate. This indicates that, although the respective update kernels are memory-bound, the
implemented improvements to the memory management and the memory access patterns
significantly increase the computational intensity, such that the amount of arithmetic op-
erations and the degree of branch divergence impact the simulation time. With respect to
the S and T gate, the latter plays an important role, as the combined execution of these
gates results in 3 and 7 distinct instruction paths, respectively. Since these instruction paths
must be executed sequentially within each warp, the obtained performance differences be-
tween the gates occur. However, comparing the average execution times of the S and T gate
to the Z gate, the decrease in the performance (factors of 1.44 and 2.38, respectively) is
significantly lower than the degree of branch divergence. This indicates the success of the
proposed strategies to reduce branching, e.g. by executing expensive memory transactions
unbranched.

Shifting the focus to the Rz (π/4) gate, an average simulation time of 50.46 ms by JUQCS-G
is found, fitting to the execution times of the aforementioned gates. With TGate = 2.59 ms
(SEQCS), the execution does also take only slightly longer than the simulation of a T gate
in the case of NG = 1. The difference can be explained by the two additional read requests
to the constant memory in order to obtain cos(π/4) and sin(π/4). Considering combined
executions of Rz gates, these memory accesses seem to result in a significant computational
overhead, such that when simulating 2 gates simultaneously an increase in the execution
time per gate by a factor of ≈ 1.4 is found. Most probably this is caused by the fact that the
update kernel used for the grouped gate evaluation demands two constant memory accesses
per amplitude, while the single gate execution kernel on average uses only a single constant
memory request per amplitude, as it has enough registers available to intermediately store
the trigonometric values mentioned above. Consequently, Fig. 1.6b shows that combining Rz

gates only becomes beneficial for gate-groups of at least 4 gates, giving a maximum speed-up
compared to the single gate execution (JUQCS-G) of approximately 3.6 (70.6). Hence, for
intermediate numbers of RZ gates, it is generally beneficial to replace them by Z, S and T
gates or evaluate them separately. Note that a similar behaviour can also be found for the
Rx and Ry rotation gates.

1.3.3.2. Single qubit non-diagonal gates

The investigation of single-qubit non-diagonal gates is split into two sets, with the first
set considering the +X, +Y and Hadamard gate, hence studying the proposed out-of-order
calculation scheme of the state amplitudes in a warp, and the second set focussing on the X
and Y gate, where SEQCS exploits the off-diagonal symmetry of the gates. All experiments
are conducted analogously to section 1.3.3.1, using l = 24 and N = 31 qubits.

32

1.3. Benchmarks

(a) H, +X and +Y benchmarks

(b) X and Y benchmarks

Figure 1.7.: The figure depicts the average gate execution time TGate = TGates / (N ⋅l) obtained
by SEQCS and JUQCS-G for the H, +X, +Y , X and Y benchmark circuits
(l = 24, N = 31). Regarding SEQCS, the gate group size is limited to {1,2} (H,
+X, +Y) and {1,2,4,8} (X, Y). The standard deviation of TGate is 0.62 ms
(JUQCS-G, H, +X, +Y), 0.68 ms (JUQCS-G, X), 0.74 ms (JUQCS-G, Y) and
≤ 0.01 ms (SEQCS, H, +X, +Y , X, Y).

33

1. Simulation of ideal quantum computing

Regarding the first gate set (see Fig. 1.7a), JUQCS-G takes approximately 50.00 ms for the
execution of each gate, with no significant differences found between the H, +X and +Y
gates, since they generally require the same number of memory transactions during their
evaluation. With an average execution time of 3.9 ms, SEQCS thus manages a respective
speed-up of ≈ 12.8 compared to JUQCS-G. In addition to this, when combining the applica-
tion of two gates, SEQCS is able to further decrease TGate to ≈ 2.93 ms for the H and +Y gate
and ≈ 1.92 ms for the +X gate, yielding a 1.34 (17) and 2 (26) times faster simulation with
respect to the single gate execution (JUQCS-G), respectively. The fact that only for the +X
gate an ideal strong scaling in TGate is obtained indicates an additional overhead in the out-
of-order execution of the +Y and H gates. In fact, only for the +X gate the permutations of
the state amplitudes among the internal variables and the permutations of the ±1 coefficients
in the joined matrix, i.e. +Xi⊗+Xj, compensate each other, such that all amplitudes can be
processed via the same instruction branch by all threads in a warp (see appendix E.5). In
contrast to this, both the update kernels for the H and +Y gate include branch divergences,
negatively impacting the simulation speed. In order to decide whether the out-of-order cal-
culation, which was introduced to prevent shared memory bank-conflicts in the expense of
small branch divergences, is beneficial for the simulation of the +Y and the H gate, Fig. 1.8
presents a comparison of the simulation times obtained by the out-of-order and an in-order
execution scheme. In doing so, the figure reveals that the out-of-order calculation achieves
a 17% faster simulation independently of MG, hence validating the considerations taken in
section 1.2.3.3.

Figure 1.8.: The figure depicts the average gate execution time TGate = TGates / (N ⋅ l) ob-
tained by SEQCS for the H and +Y benchmark circuits (l = 24, N = 31). The
simulations are conducted twice, once using the proposed out-of-order execution
scheme (see appendix E.5) and once using an in-order calculation causing bank-
conflicts.

34

1.3. Benchmarks

Continuing with the X and Y gate, Fig. 1.7b shows an increase in the average simulation time
per gate compared to the aforementioned non-diagonal gates obtained by JUQCS-G by 4.6%
(X) and 8.7% (Y). This is caused by up to 45% longer executions of the gates applied to the
first 4 qubits (see also the increase in the standard deviations to 0.68 ms (X) and 0.74 ms (Y),
respectively). Since the number of memory transactions is identical to the above-mentioned
gates, the reason for this behaviour remains an open question. Regarding SEQCS, simulation
times of 3.78 ms and 4.15 ms are observed for the singleX and Y gate executions, respectively,
yielding speed-ups of 13.8 and 13.1 with respect to JUQCS-G. These elapsed times match
approximately to Fig. 1.7a, since for example the X and +X gate feature similar update
kernels. Combining multiple gate operations into a single state traversal reveals again an
ideal strong scaling of TGate in the gate-group size, with maximal speed-ups of 7.8 (107) and
7.6 (100) in the case of 8 combined X and Y gates compared to the single gate calculation
(JUQCS-G), respectively. Note that the gate-group size is limited by the size of the cluster-
space (NC = 11). The fact that the Y gate generally executes approximately 10% slower than
the X gate can be explained by additional arithmetic operations required for the complex
phase shifts of the amplitudes.

1.3.4. Quantum algorithms
The previous sections (1.3.1 to 1.3.3) demonstrated a generally faster simulation of the
benchmark circuits by SEQCS when compared to JUQCS-G. Concerning the internode com-
munication, it was found that SEQCS achieves a significantly improved scaling of TMP I in
the number of consecutive global-local qubit exchanges. Using an optimized gate schedule,
SEQCS is able to significantly reduce the number of qubit transfers necessary in a circuit eval-
uation as well as rearrange the exchanges, such that multiple transfers can be combined. As
a consequence, the proposed MPI communication scheme is able to significantly reduce the
amount of bytes communicated between pairs of GPUs, which was found to limit the simu-
lation of large quantum circuits [27]. However, despite these improvements, it is important
to mentioned that the MPI implementation used by SEQCS is not able to fully utilize the
network bandwidth. This is most likely caused by the extensive use of unoptimized MPI
data structures and an insufficient buffer management. Solving these issues is left for future
work. Continuing with the introduction of the shared memory into the simulation process,
an up to 12.7 times faster single gate execution was obtained with respect to JUQCS-G. De-
pending on the gate-cluster size, an ideal strong scaling of TGate was determined for MC ≤ 8,
hence the use of shared memory also significantly improves the simulation time of strongly
connected quantum circuits with small gate-clusters. Moreover, it was shown that amplitude
caching does not cause a significant performance penalty, as the warp scheduler is able to
hide the additional memory transfers. Finally, the proposed combined gate execution and
the out-of-order computation pattern were found to further reduce the simulation time, by
improving the memory access patterns and the load balance. These speed-ups generally de-
pend on the size of the gate-group, yielding up to 17 times and 329 times faster evaluations
of non-diagonal and diagonal single qubit gates, respectively.

While these investigations only considered artificial benchmark circuits, specifically tailored
to one aspect of the simulation, Fig. 1.9 depicts the elapsed times of both simulators applied
to real-world quantum algorithms, in order to see how these improvements translate to the
simulation of a quantum adder (N = 30, a = 15345, b = 17422, see appendix B.3), the
quantum Fourier transformation (N = 31, see appendix B.2) and the QAOA (N = 31, p = 50,
see appendix B.1). Note that all circuits are simulated on a single A100 GPU. Throughout

35

1. Simulation of ideal quantum computing

all algorithms, SEQCS manages a significantly faster evaluation of the respective circuits,
achieving speed-ups of 23.8 (Adder circuit), 22.6 (QFT circuit) and 70.4 (QAOA circuit)
when compared to JUQCS-G. This shows that the execution times generally depend on the
ability of SEQCS to apply the proposed optimization strategies. For example, concerning
the quantum adder and the QFT, both exclusively using diagonal multi-qubit U(K) gates,
SEQCS is able to evaluate consecutive U(K) gates within a single memory traversal using
2 ⋅ ⌈ N

NC
⌉ and ⌈ N

NC
⌉ kernel calls only. In contrast to this, JUQCS-G separately executes 390 and

558 gates, respectively. Important to highlight here is also the execution speed of the QAOA
circuit. Its layered structure enables SEQCS to simulate all Rx gates in pairs, evaluate the
diagonal transformations ÛC using single memory traversals and, due to the lack of non-
diagonal two-qubit gates, create gate-clusters of more than 8 gates, hence fully utilizing the
speed-up of the shared memory. An example gate schedule of the QAOA circuit with p = 2
can be found in Fig. B.3 in appendix B.1. This significant improvement, with respect to the
simulation time, enables a much more in-depth analysis of quantum optimization algorithms,
such as the QAOA, in the following chapter 2. Using SEQCS, it is now possible to study
the respective circuits in parameter regions (p and number of circuit evaluations) that were
previously too expensive to simulate.

Figure 1.9.: The figure depicts the simulation times of JUQCS-G and SEQCS when applied
to a quantum adder (N = 30, a = 15345, b = 17422, see appendix B.3), the
quantum Fourier transform (N = 31, see appendix B.2) and the QAOA (N = 31,
p = 50, see appendix B.1).

36

Chapter 2

Quantum optimization algorithms

In chapter 1 a GPU-accelerated simulator of general quantum circuits has been
developed. Using its high-performance evaluation of QAOA circuits, this chapter
concerns the investigation of quantum optimization algorithms in the context of
exact cover and 2-SAT problem instances. A novel hybrid quantum-classical vari-
ational algorithm termed guided quantum walk (GQW) will hence be discussed in
the following sections. The GQW is a heuristic strategy, combining principles of a
trotterized continuous quantum walk and the QAOA, in order to deploy a quan-
tum walker on an oriented graph connecting the problem’s solution space. Using a
series of restrictions governing the choice of variational parameters, which control
the probability transfer between connected basis states in the graph, the quantum
walker is actively guided towards the solution state based on the problem’s energy
spectrum. Introducing additional mixing operations in order to lift degeneracies
of the energy levels, the GQW achieves superior success probabilities using inter-
mediate circuit depths compared to the QAOA and the AQA on the investigated
problem instances. Moreover, the conducted experiments indicate that the opti-
mization phase of the variational parameters scales only linearly in the number of
qubits, making the GQW an interesting candidate for near-term NISQ devices.

This chapter is structured as follows: section 2.1 will introduce the mapping of
combinatorial optimization problems onto Ising Hamiltonians, with the latter
encoding the problems’ solution spaces in the computational bases of N qubit
Hilbert spaces. Following that, section 2.2 will give an overview of common op-
timization algorithms, including the QAOA and the quantum walk. Section 2.3
will concern the derivation of the GQW, discussing the controlled movement of a
quantum walker on an oriented graph as well as developing two heuristic models,
termed HGQW and HGQW-A, for deploying the GQW on exact cover and 2-SAT
problem instances, respectively. Finally, section 2.4 will investigate the scaling of
the success probability achieved by the two models as a function of the number
of qubits and the circuit depth, and compare the performance of the GQW to
the QAOA and the AQA.

37

2. Quantum optimization algorithms

2.1. Combinatorial optimization problems
Combinatorial optimization problems occur in numerous contexts in modern society, includ-
ing both scientific and industrial use cases. Their applications range from logistics, supply
chain and manufacturing optimizations [26] to the analysis and benchmarking of classical as
well as quantum computing hardware [8, 27, 28]. Max-Cut, travelling salesman, and covering
problems among others are important representatives of this class of problems [64]. In gen-
eral, a combinatorial optimization problem describes the process of finding an element in a
vast collection of possible elements that is optimal given some predefined metric. A common
property of such problems is that the search space grows at least exponentially in the prob-
lem size, making a naive element-wise search quickly intractable in modern frameworks. As
a consequence, classical optimization algorithms have been developed in the past exploiting
the structure and symmetry of the problem in question and thus reducing the number of
inspections needed. With the ever-growing interest into quantum computing since the early
1990s with the discovery of Shor’s algorithm [7] and the immense computational capabili-
ties associated with it, a new class of optimization strategies and hardware based around
quantum phenomena, such as superposition of computational basis states, qubit entangle-
ment and complex phase interference (see section 1.1), has emerged. Prominent examples
are the quantum approximate optimization algorithm (QAOA) [65] and quantum annealers
[66], which will be discussed later in this chapter. Before, however, going into more detail
on quantum optimization algorithms, the mapping procedure of combinatorial optimization
problems into quantum systems is explained in this section.

Combinatorial optimization problems can be formally defined by introducing a classical
objective function, commonly referred to as the cost function, C ∶ Z → R that assigns a real
value, the cost, to all elements Zi in the set of all possible solutions Z = {Zi}. Since the
solution space of any combinatorial optimization problem can be mapped to a finite discrete
set, the elements Zi = [zN−1 . . . z0]2 are defined as N -bit binary strings. The combinatorial
optimization problem now seeks to find the element Zopt ∈ Z with minimal cost, yielding
C (Zopt) ≤ C (Zi) ∀ Zi ∈ Z. Note that the minimization problem can also be transformed
into a maximization problem by remapping C (Zi) → −C (Zi). Two common formulations of
the objective function C (Zi) used in the literature are the quadratic unconstrained binary
optimization (QUBO) model and the Ising model:

QUBO: CQUBO (Z = [zN−1 . . . z0]2) = ∑
i ≤ j

ziQijzj +CQUBO
0 , (2.1)

Ising: CIsing (S = [sN−1 . . . s0]2) = −∑
i

hisi + ∑
i < j

Jijsisj +C Ising
0 , (2.2)

with 0 ≤ i, j < N . In case of the QUBO formulation (see Eq. 2.1), the problem is en-
coded via the upper-triangular quadratic matrix Q ∈ RN×N and the binary problem variables
zi ∈ {0,1}. In the Ising model, on the other hand, the description of a physical system
consisting of N Ising spins arranged on a lattice is exploited for encoding the problem (see
Eq. 2.2). These spins can occupy one of two distinct states, spin-↑ and down-↓, corresponding
to the problem variables si = +1 and si = −1, respectively. Using long-range magnetic inter-
actions, described via the coupling strengths Jij ∈ R, ferromagnetic and antiferromagnetic
coupling is introduced between the pairs of spins, encouraging them to align or anti-align
depending on the sign of Jij. In addition to that, an external magnetic field hi ∈ R is ap-
plied at each spin site, causing an energy difference between the spin-↑ and spin-↓ state. In

38

2.1. Combinatorial optimization problems

doing so, the combinatorial optimization problem is represented within the properties of the
physical system. The parameters CQUBO

0 ,C Ising
0 ∈ R appearing in Eq. 2.1 and Eq. 2.2, respec-

tively, refer to constant collective shifts of the cost values assigned to the solution strings Z
and S. While affecting neither the problem’s solution nor the optimization algorithm, they
are used throughout this chapter to map the solution string to zero cost, i.e C (Zopt) = 0,
making it convenient to determine whether the optimal solution has been found in the opti-
mization process. Note, however, that the solution cost must be determined beforehand for
this procedure, limiting it to research contexts where either Zopt or C (Zopt) are known by
construction. In order to transform between the QUBO and Ising formulations (the former
being used by SEQCS), the gate-based quantum computing convention will be considered:

zi =
1 − si

2 , (2.3)

such that zi = 0 (zi = 1) is mapped to si = +1 =∧ spin− ↑ (si = −1 =∧ spin− ↓) (see appendix
F for the full conversion). Note that in the literature on quantum annealing, an alternative
conversion zi = (1 + si) / 2 is also common, yielding the remapping hi → −hi [8, 28]. A natural
way to transfer the classical objective function C into a quantum system is to construct the
Ising formulation of the optimization problem and apply a remapping of the spin variables
si to the Pauli-z operators σ̂z

i (see Eq. 1.3). In doing so, the cost Hamiltonian (formally an
Ising-Hamiltonian) ĤC follows:

ĤC ≡ Ĥ (σ̂z
0, . . . , σ̂

z
N−1) = ∑

0 ≤ i < j ≤ N−1
Jijσ̂

z
i σ̂

z
j −

N−1
∑
i = 0

hiσ̂
z
i + C Ising

0 (2.4)

= ∑
Z ∈ {0,1}⊗N

C(Z) ∣Z⟩ ⟨Z ∣ , (2.5)

with ∣Z⟩ = ∣z0⟩ ⊗ ⋅ ⋅ ⋅ ⊗ ∣zN−1⟩ and σ̂z
i referring to the Pauli-z operator acting on the ith

qubit. Note that due to the chosen conversion between the binary variables zi and the spin
states si (see Eq. F.7), zi = 0 (zi = 1) maps to the ∣0⟩ (∣1⟩) state of the quantum system,
yielding si = ⟨zi∣σ̂z

i ∣zi⟩. As a consequence, the spectral decomposition of HC (Eq. 2.5) encodes
the individual solutions to the optimization problem in the computational basis, with the
ground state ∣Zgs⟩ (the lowest eigenvalue state) representing the optimal solution Zopt. For
this reason, one introduces the success probability Pgs and the approximation ratio Ar [67],
defined as:

Success probability: Pgs = ∣⟨Zgs∣Ψ⟩∣2, (2.6)

Approximation ratio: Ar =
⟨Ψ∣ĤC ∣Ψ⟩

max
Zi ∈ Z

C(Zi)
. (2.7)

These metrics are used to gauge the performance of quantum optimization algorithms in
tuning the system’s state ∣Ψ⟩ into ∣Zgs⟩. Note, however, that the success probability is a
valid metric only in research contexts, as again the knowledge about the solution string Zopt

is required for its calculation. Moreover, even though Pgs and 1−Ar feature the same global
maximum, their energy landscape can be inherently different [30], making it necessary to test
quantum optimization algorithms using these metrics (see e.g. the QAOA in section 2.2.2)
also with respect to Ar to verify their performance in real world applications.

39

2. Quantum optimization algorithms

Throughout this chapter, two different types of optimization problems, namely exact cover
problems and 2-SAT problems, will be investigated and used for benchmarking quantum
optimization algorithms. They are chosen, as the considered instances correspond to two
extremes in the distribution of the energy levels, which will play an important role in the
design of the guided quantum walk in section 2.3. All problems investigated feature a unique
ground state ∣Zgs⟩ and are furthermore rescaled by dividing the parameters Jij, hi and CIsing

(see Eq. 2.4) by:

max{max [maxhi

hmax

,0] , max [minhi

hmin

,0] , max [maxJij

Jmax

,0] , max [minJij

Jmin

,0]} , (2.8)

with hmax = −hmin = 2 and Jmax = −Jmin = 1. Note that the same rescaling was used by Willsch
et al. when investigating exact cover problems [30] and is motivated by the normalization
done by D-WAVE quantum annealers [66]. This procedure allows bringing the energies of
different problem instances to a common scale, while not influencing the problem’s solution,
which will simplify the application of quantum optimization algorithms later on.

2.1.1. Exact-Cover problems
Exact cover problems belong to the broader class of NP-Complete set covering and parti-
tioning problems [68] and have become an established choice for studying and benchmark-
ing quantum algorithms [9, 28, 69]. The problem can be stated as follows: Consider a set
U = {x0, x1, . . . , xP−1} of P distinct elements, and N subsets Vi ⊆ U(i = 0, . . . , N − 1), such
that U = ⋃i Vi. The exact cover problem now seeks to find a subset L of the set of sets {Vi},
such that the elements of L are disjoint sets and the union of the elements of L is U . Exact
cover instances are commonly encoded in matrix form using an exact cover matrix A, where
the matrix columns (enumerated by j) refer to the P individual elements xj in U and the
matrix rows (enumerated by i) correspond to the N subsets Vi. Thus, the matrix coefficients
aij determine whether an element xi is included in a subset Vj (aij = 1) or not (aij = 0). As a
consequence, L is the subset of matrix rows such that in each column of selected rows, the
entry 1 appears exactly once, yielding the objective function C:

C (Z = [zN−1 . . . z0]2) =
P−1
∑

j = 0
(

N−1
∑
i = 0

aij zi − 1)
2

, (2.9)

with zi encoding the selection of subsets Vi. In order to obtain the Ising formulation of the
problem, the binary problem variables {zi} get replaced by spin variables {si} using Eq. 2.3,
yielding the expressions for the coefficients of the Ising model (see Eq. 2.2) after collecting
linear, quadratic, and constant terms:

hi = −
1
2∑j
(AAT)

ij
+ (Ab⃗)

i
, (2.10)

Jij =
1
2
(AAT)

ij
, (2.11)

C Ising
0 = b⃗T b⃗ + 1

2∑i<j
(AAT)

ij
+∑

i

[12
(AAT)

ii
− (Ab⃗)

i
] . (2.12)

40

2.1. Combinatorial optimization problems

with b⃗ = (1, . . . , 1)T being a P dimensional vector of ones. The exact cover instances used
throughout this chapter were generated using the algorithm described in appendix G.1. In
total, 48 unique problems have been randomly created with 8 instances for each system
size N ∈ {10, 12, 14, ..., 20}. The number of elements in U (number of matrix columns)
is set to 64 and the number of solution bits (i.e. the number of set bits in the Zopt) is
approximately 1/3 of the system size N . The reason for choosing these parameters in the
generation process is that the resulting problems feature numerous distinct energy levels
(> 100 ⋅N) with a relatively low degeneracy of the energies of the first excited eigenstates
(< N) (see e.g. Fig. 2.1). This is mainly achieved by the large number of elements P (3 to
6 times larger than the number of qubits N), causing numerous interactions between the
qubits representing the matrix rows, hence allowing to distinguish a great number of them in
energy. Note that in real world applications, such as the tail assignment problem investigated
by Willsch et al. [28], typically even larger matrices are used with P > 15 ⋅ N , causing a
large energy splitting. The complete set of investigated problems, including their QUBO
formulations and energy spectra, is given in appendix G. Moreover, EC_N_I will be used for
referencing individual problems, with N being the number of qubits and I ∈ {1, 2, . . . , 8}
referring to the problem instance.

Figure 2.1.: The plot shows the degeneracy of the energy levels of HC (see Eq. 2.5) for
the EC_16_1 exact cover problem. The problem instance features 1024 unique
energies, as a result of the large number of matrix columns P = 64 in A, allowing
to distinguish a great number of row combinations in energy. Also note the
differences in the energy gaps between the energy levels. Similar distributions
of the states can be obtained for all investigated problems in the exact cover
problem set (see appendix G).

41

2. Quantum optimization algorithms

2.1.2. 2-SAT problems
The second type of combinatorial optimization problems that will be considered in this
chapter are satisfiability problems, which have been extensively used in the study of quantum
annealing in the past [70–72]. Similar to exact cover problems, 2-SAT problems are also NP-
Complete and belong to the class of set covering and partitioning problems [68]. A 2-SAT
problem seeks to satisfy a binary function F consisting of a conjunction of P binary clauses
Dk. Each Dk is given as an or-operation between two binary variables Lk,1 and Lk,2, with
Lk,j ∈ {zi, z̄i}. Here, {zi} denotes the set of the N binary problem variables. Thus, the goal
is to find the bit string Z = [zN−1 . . . z0]2, such that every clause Dk is fulfilled:

F =D0 & D1 & . . . & DM−1, (2.13)

Dk = Lk,1 ∣ Lk,2. (2.14)

2-SAT instances can be mapped to classical objective functions C (Z) by assigning cost
values c to the satisfaction of the individual clausesDk using c (Dk, S) = (1 −Lk,1)⋅(1 −Lk,2) =
[1 − ϵk,1 s (k,1)]⋅[1 − ϵk,2 s (k,2)]. Here, ϵk,j = 1 (ϵk,j = −1) if zj appears negated (not negated)
in the kth clause and s (k, j) refers to the spin si ∈ S that is mapped to the jth literal of the
kth clause. Note that Eq. 2.3 is used to convert between the binary variables Z and the Ising
spins S. In doing so, the objective function can be constructed as the sum of the individual
penalty terms c (Dk, S):

C (S = [sN−1 . . . s0]2) =
P−1
∑

k = 0
c (Dk, S) (2.15)

=
P−1
∑

k = 0
[1 − ϵk,1 s (k,1)] ⋅ [1 − ϵk,2 s (k,2)] . (2.16)

Since c (Dk, S) ≥ 0, the solution string Sopt fulfils C (Sopt) = 0, with all penality terms
vanishing. After restructuring Eq. 2.16 into constant, linear and quadratic terms in si, the
expression for the Ising parameters is obtained:

hji
=

M−1
∑

k = 0
ϵk,ji

, (2.17)

Jj1,j2 =
M−1
∑

k = 0
ϵk,j1 ⋅ ϵk,j2 , (2.18)

C Ising
0 = 1. (2.19)

The 2-SAT problems which will be investigated in this chapter are taken from the pool
of problem used in [73]. In total, 48 problems are considered with 8 instances per system
size N ∈ {10, 12, 14, . . . , 20}. In contrast to the exact cover problems described before,
the number of energy levels of these problems is small, as the energies that are assigned
to the individual states ∣Z⟩ correspond to the number of violated penalty terms, resulting
in P + 1 unique energy levels. Since P is in the order of N , while the number of states
grows exponentially with 2N , the problem instances generated by Mehta et al. feature high
degeneracies in the energy spectrum (see e.g. Fig. 2.2). Therefore, the 2-SAT instances can
be thought of as the opposite extreme to the exact cover problems, regarding the energy
distribution of ĤC (see Eq. 2.4). For referencing individual problem instances, an analogue
scheme to section 2.1.1 will be applied, using 2SAT_N_I with the system size N and the
problem instance I ∈ {1, 2, . . . , 8}. Moreover, the complete set of 2-SAT problems is given
in appendix H.

42

2.2. Quantum optimization algorithms

Figure 2.2.: The plot shows the degeneracy of the energy levels of ĤC (see Eq. 2.5) for
the 2SAT_16_1 problem instance. The problem features 11 unique energy levels,
referring to the discrete number of violated penalty terms in Eq. 2.16. Also note
the equal distribution of the energy levels and their high degeneracies compared
to the exact cover problem shown in Fig. 2.1. Similar distributions of the states
can be obtained for all problems in the investigated 2-SAT problem set (see
appendix H).

2.2. Quantum optimization algorithms

The discovery of Shor’s algorithm for integer factorization [7] and Grover’s search algorithm
[6], proven to achieve exponential and polynomial speed-ups compared to their best classical
counterparts, demonstrated the computational capabilities of quantum computing and ini-
tiated a decade long run on building large scale quantum devices [2–4]. Recently, quantum
computing has entered the so called NISQ-era [37], with the increasing availability of Noisy
Intermediate Scale Quantum (NISQ) devices, offering few imperfect qubits (N = O(100))
with limited coherence times and weak error-correction capabilities. Since both Shor’s and
Grover’s algorithm require millions of qubits with error correction techniques [17], recent
research has shifted towards noisy and shallow quantum algorithms, in order to achieve
useful quantum computation already within the next decade [22]. Among others, heuris-
tic algorithms for solving combinatorial optimization problems have emerged as promising
candidates for such NISQ devices, with realizations in both the circuit [18, 20, 65, 67] and
annealing model [66, 74, 75]. In what follows, the three main branches of quantum opti-
mization algorithms, namely quantum annealing (section 2.2.1), the quantum approximate
optimization algorithm (section 2.2.2) and quantum walks (section 2.2.4), will be introduced,
providing the basic framework for the development of a novel strategy termed guided quan-
tum walk in section 2.3.

43

2. Quantum optimization algorithms

2.2.1. Quantum annealing
During the early 2000s, adiabatic quantum computing (AQC) emerged as one of the major
computational frameworks in quantum computation [74, 76, 77]. Alongside gate-based and
measurement-based computing, adiabatic quantum computing is proven to be universal [74]
and gained much interest due to its strong connections to both condensed matter physics and
complexity theory. The framework is based on the adiabatic theorem, stating that a system
starting in a non-degenerate ground state of a time-dependent Hamiltonian Ĥ (t), which is
transitioning from some initial form ĤM to some final form ĤC , during the annealing time
τ , will remain in its instantaneous ground state throughout the evolution, provided that the
Hamiltonian Ĥ (t) changes sufficiently slow [78, 79]. By using two time dependent annealing
function FM (t) and FC (t), which control the transition between ĤM and ĤC , the time
evolutions of the initial state ∣Ψ0⟩ is given by the time-dependent Schrödinger equation (see
Eq. 1.6):

Ĥ (t) = FM (t) ĤM + FC (t) ĤC , 0 ≤ t ≤ τ, (2.20)

∣Ψ⟩ (t) = exp
⎡⎢⎢⎢⎢⎣
−i

t

∫
0

Ĥ (t′)dt′
⎤⎥⎥⎥⎥⎦
∣Ψ0⟩ . (2.21)

Note that FM (0) /FC (0) ≫ 1 (Ĥ (0) ≈ FM (0) ĤM) and FM (τ) /FC (τ) ≪ 1 (Ĥ (τ) ≈
FC (τ) ĤC) are required. Typical annealing schemes used in the literature include linear
time evolutions [30, 73], i.e. FM (t) = (1 − t/τ) and FC (t) = t/τ , as well as exponential
distributions, which are commonly used by D-Wave quantum annealers [80]. In case the
initial Hamiltonian ĤM is such that it ground state can be constructed easily, and the final
Hamiltonian ĤC encodes the solution to a computational problem in its ground state, the
adiabatic evolution of Eq. 2.20 will tune the system into the solution state. According to the
adiabatic theorem, the transition between the two Hamiltonians is assured to be adiabatic
if the annealing time τ satisfies the condition:

τmin ≫ max
0 ≤t ≤τ

∣⟨Ψfs (t)∣ dĤ
dt ∣Ψgs (t)⟩∣

∆E2 (t)
, (2.22)

with ∣Ψgs (t)⟩ and ∣Ψfs (t)⟩ denoting the ground and first exited eigenstate of the instan-
taneous Hamiltonian Ĥ (t), and ∆E (t) being the instantaneous energy gap between them
[79]. Eq. 2.22 reveals that the minimal annealing time τ scales inverse quadratically in the
minimal energy gap, ∆Emin = min0 ≤t ≤τ ∆E (t), between the ground and first exited state,
yielding long annealing times for small ∆Emin. Note that this also limits AQC to non-
commuting initial and final Hamiltonians, i.e. [ĤM , ĤC] ≠ 0, as otherwise the energy gap
closes at some point, causing τ →∞. Due to the expected quantum speed-up, noise-induced
errors (e.g. thermal fluctuations and control errors) and an unfavourable energy spectrum
of ĤC , real world applications often demand adiabatic quantum computation to finish early,
hence violating Eq. 2.22 and causing low success probabilities Pgs [81]. To solve this problem,
optimized annealing schedules [70, 82, 83] and additional trigger Hamiltonians [72, 73] have
been studied in the literature, trying to increase Pgs for too short annealing times (τ < τmin)
and widen the minimum energy gap between ∣Ψgs (t)⟩ and ∣Ψfs (t)⟩, respectively. Moreover,
diabatic transitions have been found to improve the success probability [84, 85]. Note, how-
ever, that previous findings in the literature also indicate an exponential scaling of τmin in
the number of qubits N [86].

44

2.2. Quantum optimization algorithms

Quantum annealing now describes a metaheuristic application of adiabatic quantum compu-
tation in the context of combinatorial optimization problems, as introduced in section 2.1. By
restricting the final Hamiltonian ĤC to Ising form (see Eq. 2.4), whose ground state encodes
the solution to the optimization problem in question, quantum annealing takes advantage
of the adiabatic evolution expressed by Eq. 2.21 to tune the system into the desired so-
lution state. In doing so, quantum annealing is often considered as the quantum analogue
of simulated annealing. The latter is a classical strategy for solving optimization problems
based on a random walk originating from a random computational basis state by performing
Metropolis-Hasting updates with the goal to relax in a minimum of the potential landscape
[87]. While simulated annealing relies on thermal fluctuations, by initializing the system
at high temperature and gradually cooling it down to overcome energy barriers, quantum
annealing operates in the regime of extremely low temperature, where quantum effects are
significant. The key idea is, to use quantum fluctuations, controlled by the strength of the
initial Hamiltonian, in the eigenbasis of the final Hamiltonian, to achieve tunnelling through
potential barriers [87]. Consequently, ĤM = ∑N−1

i = 0 σ̂
x
i is commonly used to initialize the sys-

tem, since its ground state ∣+⟩⊗N is generally preparable with high probability and provides
maximal fluctuations in the computational basis. With the growing availability of commer-
cial quantum annealers from D-Wave, which offer system sizes of more than 5000 qubits
[66], and the fact that quantum annealing has been shown to be superior to simulated an-
nealing in case of tall energy barriers [87, 88], quantum annealing has recently developed
into a common approach in both research and industry for tackling complex optimization
problems.

2.2.2. Quantum approximate optimization algorithm
In 2014, Farhi et al. introduced the quantum approximate optimization algorithm (QAOA),
a hybrid quantum-classical variational algorithm capable of finding approximate solutions to
combinatorial optimization problems by combining a parameterized quantum evolution with
a classical optimizer for finding optimal tuning parameters [65]. The QAOA became popular
due to its shallow circuit depth and demonstrated success for various kinds of optimization
tasks, including Max-Cut and Travelling salesman problems, making it a promising candi-
date for near-term NISQ devices [9, 63, 67]. Moreover, it was proven by Farhi et al. that
QAOA circuits cannot be efficiently (i.e. without exponential overhead) simulated on classi-
cal computers [89]. In order to construct the QAOA for a specific optimization problem, the
following two unitary evolutions are considered:

Phase separation: ÛC (γ) = e−iγĤC , (2.23)

Mixing: ÛM (β) = e−iβĤM with ĤM =
N−1
∑
i = 0

σ̂x
i . (2.24)

Here, the evolution times β and γ denote variational parameters. Commonly the QAOA
begins by preparing the system in the equal superposition state ∣+⟩⊗N , i.e. the ground state
of −ĤM , providing an unbiased initial distribution of the measurement probabilities. Note
that in contrast to quantum annealing, any choice for the initial state is possible, with bi-
ased approaches reducing circuit depths for certain problems. The QAOA is composed of p
layers, with each layer consisting of a consecutive application of the phase separation evo-
lution ÛC (γ) followed by the mixing evolution ÛM (β). Similar to quantum annealing, the

45

2. Quantum optimization algorithms

optimization problem is encoded in the ground state of an Ising Hamiltonian (see Eq. 2.4)
termed ĤC . This cost Hamiltonian is used for separating the computational basis states in
their complex phases according to their energy (cost) assigned by the optimization prob-
lem. Based on these phase differences, the mixing Hamiltonian ĤM is then applied to cause
probability transfers between the basis states and consequently increase the system’s over-
lap with the solution state. As such, ĤC and ĤM must not commute, i.e [ĤC , ĤM] ≠ 0,
as otherwise both Hamiltonians share identical eigenbases, yielding only phase changes to
the state amplitudes and thus leaving the system physically unchanged. Hence, the sum of
Pauli-x operators was proposed for ĤM by Farhi et al., as it provides maximal mixing in the
computational basis. Note, however, that other mixing Hamiltonians have been investigated
in the literature [90], including a generalization of the QAOA, called quantum alternating
operator ansatz [91]. The latter suggests switching mixing operations throughout the QAOA
layers. The final state of the QAOA is given by:

∣β,γ⟩ =
p

∏
k = 1

ÛM (βk) ÛC (γk) ∣+⟩⊗N (2.25)

=
p

∏
k = 1

e−iβkĤM e−iγkĤC ∣+⟩⊗N
. (2.26)

Here, ∣β,γ⟩ is called the variational state, since it depends on the sets of 2p variational
parameters β = {βi} and γ = {γi}. Note that each βk lies in the interval between 0 and π,
since inserting βk → βk + π into Eq. 2.25 yields only a global phase factor. Likewise, if the
eigenvalues of ĤC are all integers, γk lies within 0 and 2π for similar reasons. Moreover, since
both e−iβkĤM and e−iγkĤC denote rotations in their respective eigenbasis, β and γ are also
often referred to as angles. The idea of the QAOA is that with optimal angles βopt and γopt

and sufficient algorithmic depth p, ∣βopt,γopt⟩ should have a large overlap with computa-
tional basis states close (small Hamming distance) to the solution string, yielding sufficient
approximate solutions with high probability when measuring the final system in the compu-
tational basis. However, determining βopt and γopt is generally a non-trivial task, denoting
an optimization problem itself [65]. Therefore, Farhi et al. proposed a hybrid classical and
quantum ansatz, by efficiently preparing Eq. 2.25 via a quantum device and optimizing the
sets of variational parameters in an outer classical loop based on the energy expectation of
the prepared state (see Fig. 2.3):

(βopt,γopt) = arg max
β, γ
⟨β,γ∣ĤC ∣β,γ⟩ . (2.27)

Concerning intermediate sized QAOA circuits, this approach, however, quickly becomes
infeasible, due to the increasing complexity of the highly non-convex and exponentially
growing parameter search space [30, 67]. Consequently, classical optimizers often get stuck in
suboptimal local minima in the parameter space, requiring several optimization runs and thus
limiting the QAOA to only shallow instances. Since, however, the optimal success probability
of the QAOA increases monotonically in its algorithmic depth p, several strategies have been
proposed in the literature for determining good initial guesses for β and γ, in order to simplify
the optimization process in the region of intermediate to large p. These approaches are based
on the observation of common patterns in the distribution of the variational parameters
occurring across different problem instance [9, 92, 93], yielding machine learning [94, 95] and
iterative strategies [67, 96].

46

2.2. Quantum optimization algorithms

Quantum computer Classical computer

∣0⟩ H

Û
C
(γ

0)

Û
M
(β

0)

. . .

Û
C
(γ

p−1)

Û
M
(β

p−1)

M
inim

ize
⟨β
,γ∣Ĥ

C ∣β
,γ⟩

∣0⟩ H . . .

⋮ ⋮ ⋮

∣0⟩ H . . .

●

³ ¶´ µ ³ ¶´ µ

Update (β,γ)

Figure 2.3.: The figure depicts the quantum-classical QAOA procedure for solving combi-
natorial optimization problems [65]. First, the system is initialized in the equal
superposition state ∣+⟩⊗N by applying Hadamard gates H to all qubits. Next,
a set of 2p angles (β,γ) is selected randomly. Based on these angles, p QAOA
layers are performed, each consisting of a phase separation evolution Ûp (γ) and
a mixing evolution ÛM (γ). Eventually, the system is measured in the computa-
tional basis, yielding a classical output bit string Z. The procedure is repeated
m times in order to estimate Ē = ⟨β,γ∣ĤC ∣β,γ⟩ ≈ 1/m∑m

i = 1C (Zi). Finally, a
classical optimizer is queried to update (β,γ) based on the energy expectation
and the process in repeated, until Ē is sufficiently low.

2.2.3. Approximate quantum annealing
The approximate quantum annealing (AQA) algorithm is a heuristic strategy proposed by
Willsch et al. for finding approximate solutions to combinatorial optimization problems
[18, 30], closing the gap between quantum annealing and the QAOA. Beginning with the
simulation of a quantum annealing process, the evolution of the quantum system is described
via the time-dependent Schrödinger equation (see Eq. 1.6), for times 0 < t < τ , with Ĥ (t) =
FM (t) ĤM+FC (t) ĤC denoting the annealing Hamiltonian and ĤM and ĤC being the driving
and cost Hamiltonian, respectively. Note that the strengths of the latter are controlled via the
annealing functions FM (t) and FC (t), satisfying FM (0) /FC (0) ≫ 1 (Ĥ (0) ≈ FM (0) ĤM)
and FM (τ) /FC (τ) ≪ 1 (Ĥ (τ) ≈ FC (τ) ĤC) (see section 2.2.1). The AQA can now be
derived from the observation, that the time-evolution of the quantum state ∣Ψ0⟩ can be
simulated using time-stepping and the second-order Suzuki-Trotter formula [97]:

∣Ψ⟩ (τ) = Û (τ) ∣Ψ0⟩ , (2.28)

Û (τ) = T exp
⎡⎢⎢⎢⎢⎣
−i

τ

∫
0

Ĥ (t)dt
⎤⎥⎥⎥⎥⎦

(2.29)

≈
p

∏
k = 1

e−i Ĥ(k∆t)∆t (2.30)

≈
p

∏
k = 1

ei 1
2 ∆t FM (k∆t) ĤM ei ∆t FC(k∆t) ĤC ei 1

2 ∆t FM (k∆t) ĤM . (2.31)

47

2. Quantum optimization algorithms

Here, Û (τ) denotes the time evolution operator, T is the time-ordering symbol and ∆t = τ/p
represents the time steps. Choosing ∣Ψ0⟩ = ∣+⟩⊗N to initialize the system, ei 1

2 ∆t FM (k∆t) ĤM ∣+⟩⊗N

can be replaced by ∣+⟩⊗N in Eq. 2.28, as it only introduces an unmeasurable global phase
factor. In doing so, Eq. 2.28 has the same structure as the variational state obtained by the
QAOA (see Eq. 2.25), giving a bijective mapping between the variational parameters β and
γ and the annealing functions FM (t) and FC (t):

βk = −
1
2 ∆t [FM (∆t ⋅ (k + 1)) + FM (∆t ⋅ k)] , k = 1, . . . , p − 1, (2.32)

βp = −
1
2 ∆t FM (∆t ⋅ p) , (2.33)

γk =∆t FC (∆t ⋅ k) , k = 1, . . . , p. (2.34)

According to Willsch et al., the underlying idea of AQA is to solve the TDSE with time-
steps ∆t that are too large and too few (i.e. small p) to describe an accurate adiabatic time
evolution of a genuine quantum annealing process [30], due to large Trotter errors. Con-
sequently, AQA does not rely on the adiabatic theorem, i.e. in the proposed parameter
regime its success is not guaranteed. However, using a classical optimizer for tuning ∆t,
competitive success probabilities compared to the QAOA as a function of the computational
workload can be achieved, due to the significantly reduced parameter search space (1 vs 2p
dimensional). This can be understood, as previous findings [9, 63, 93] suggest that optimal
distributions of variational parameters in the QAOA tend to follow certain curves, which
resemble approximate annealing schedules. Thus, using Eq. 2.32, the AQA can also be used
for initializing the QAOA parameters, with the hope that sufficient local maxima in the
parameter space can be determined more easily compared to random initializations. Note,
however, that the QAOA can go beyond quantum annealing and thus AQA, e.g. by uti-
lizing diabatic evolutions, which can reduce the computation times [67]. The AQA will be
used throughout this thesis as a reference algorithm for solving optimization problems in the
regime of intermediate p.

2.2.4. Quantum walk
First mentioned by Aharonov et al. in 1993 [98], quantum walks describe a broad class
of continuous-time quantum evolution algorithms, featuring a strong connection to classi-
cal random walks. In contrast to their classical counterparts, quantum walks replace the
stochastic evolution of a probability vector with the iteration of a unitary matrix on a state
vector living in a complex Hilbert space. In doing so, the physical description changes from
a walker moving stochastically across vertices on a graph to a quantum walker moving in
superposition over the basis states [99, 100]. In recent years, quantum walks gained pop-
ularity due to their ability to simulate complex quantum system and derive new quantum
algorithms [101]. Two models of quantum walks have been proposed in literature:

• Discrete quantum walks typically utilize two Hilbert spaces HC (coin space) and
HP (position space) for describing the movement of the quantum walker across the
vertices (position space) [102]. The coin space decodes the internal state of the walker,
which in turn denotes the direction of propagation in the position space. Thus, the
discrete-time evolution consists of two operations applied in an alternating order, with
an initial coin Hamiltonian driving the walker’s internal state and a subsequent shift

48

2.2. Quantum optimization algorithms

Hamiltonian moving the walker according to it. A main requirement of this type of
quantum walks is graph locality, meaning that the shift operator is only allowed to move
the walker to adjacent states according to the proposed graph structure [101]. In doing
so, discrete quantum walks share large similarities to classical random walks. Note that
also coinless discrete quantum walks have been proposed in literature, utilizing graph
partitions to derive adjusted shift Hamiltonians for each sub-graph allowing them to
operate exclusively in the position space [103].

• Continuous quantum walks, on the other hand, are defined in a single Hilbert
space using a continuous time evolution of the quantum system described via the
time-dependent Schrödinger equation, such that the quantum walker moves at all times
[81, 104]. Consequently, this class of quantum walks does not require locality of the
evolution operations, as the walker spreads continuously over the vertices, not being
limited to discretized steps.

As mentioned above, both types of quantum walks are defined on an undirected graph
G(V,E), with V = {j}2N−1

j = 0 denoting the set of 2N vertices and E describing the set of edges
connecting pairs of vertices (j, k). In doing so, the vertices correspond to the positions of
the quantum walker across the computational basis states of an N qubit Hilbert space, and
the edges indicate the possible transitions between the state. Focussing on the continuous
quantum walk in the following, the dynamics of the walker are described via the time-
evolution operator Û (t) = exp (−iĤM t) of the driving Hamiltonian ĤM . Here, ĤM is related
to G through the adjacency matrix A (Aij = 1 for (j, k) ∈ E and Aij = 0 otherwise), the
diagonal matrix D (Djj = deg (j), with deg (j) denoting the number of connected edges to
vertex j) and the hopping rate γ̃, describing the transfer rate between connected vertices
per unit time: ⟨j∣ ĤM ∣k⟩ = −γ̃ Ljk. Note that L = A−D is the Laplacian of G [104]. Common
choices of graph layouts include:

Complete Graph: ĤM = γ̃
⎡⎢⎢⎢⎢⎣
2N ⋅ I⊗N −

2N−1
∑

j,k = 0
∣k⟩ ⟨j∣

⎤⎥⎥⎥⎥⎦
, (2.35)

Hypercube graph: ĤM = γ̃ [N ⋅ I⊗N −
N−1
∑

j = 0
σ̂x

j] . (2.36)

Regarding the complete graph, every vertex is connected to every other, while in the hyper-
cube mapping only states with a Hamming distance of one share an edge (see e.g. Fig. 2.4). Since
ĤM is hard to implement in case of the complete graph on both quantum hardware and clas-
sical simulators, the hypercube graph will be considered henceforth. To this point, the time
evolution of the system will only cause a uniform spread of the walker over all vertices in
the graph. In order to use continuous quantum walks to solve combinatorial optimization
problems, a second evolution under the cost Hamiltonian ĤC is added. Similar to quantum
annealing and the QAOA, ĤC uses Eq. 2.4 to encode the solution state in the ground state
of an Ising Hamiltonian, yielding: Ĥ (γ̃) = ĤM (γ̃) + ĤC .

Using the equal superposition state ∣+⟩⊗N to initialize the system, the optimization is per-
formed by evolving the quantum state under the full Hamiltonian Ĥ (γ̃) for a time τ followed
by measuring the system in the computational basis, i.e. the eigenbasis of ĤC . The key idea
is, that the fast spreading of the quantum walker via ĤM (γ̃) provides a rapid exploration

49

2. Quantum optimization algorithms

of the basis states, while the energy spectrum of ĤC results in a localization of the walker
around low-energy states. Note that the success probability typically oscillates in the total
evolution time τ , generally requiring prior knowledge of an optimal τ for the optimization
problem in question [104]. Consequently, the protocol is typically repeated multiple times
using measurement times τ uniformly distributed at random in an interval [τ, τ +∆t], in or-
der to prevent only measuring the system where Pgs happens to be small. The average single
run success probability is then given by: P̄gs = 1/∆t ∫

τ +∆t

τ Pgs (t′)dt′ [104]. Moreover, Pgs is
influenced by the ability of the quantum walker to move between the vertices controlled by
the hopping rate γ̃, which is usually chosen time-independent. Note that other choices have
also been investigated [81]. Comparing Ĥ (γ̃) to Eq. 2.20, the continuous quantum walk
can also be viewed as a quantum annealing process using an infinitely fast quench, with
B (0) jumping from zero to A (0) /γ̃ at t = 0 and A (τ) dropping to zero at the final time
t = τ . Based on this observation, adjusted quantum walk protocols, e.g. using pre-annealed
quantum states or monotonic quenches where the strength of γ̃ constantly decreases, have
been proposed, in order to increase the single-shot success probability [81].

Figure 2.4.: The figure shows the graph structure of a hypercube mapping in case of an
N = 4 qubit Hilbert space. Each node corresponds to one computational basis
state. The nodes are grouped by colour depending on their Hamming weight and
connected if they have a Hamming distance of one.

50

2.3. Guided quantum walk

2.3. Guided quantum walk
In section 2.2 the three main branches of quantum algorithms aimed at solving combinatorial
optimization problems (see section 2.1) have been presented, namely quantum annealing, the
QAOA and quantum walks. While not delivering exponential speed-ups in finding the solu-
tion to NP-complete problems (e.g. exact cover problems and 2-SAT problems) it is hoped
that variants of these algorithms can achieve polynomial speed-ups compared to their clas-
sical counterparts. Moreover, approximate solutions to combinatorial optimization problems
might be efficiently obtainable via these strategies, playing an important role for problem
instances where solutions that are good enough are still valuable if they can be obtained fast
[65, 89]. However, a major drawback of these algorithms are the immense computational
resources associated with them in the context of real-world problems [30, 81]. For exam-
ple, the time required for an optimal quantum annealing scheme scales exponentially in the
size of the smallest energy gap in the system, while for the QAOA a complex non-convex
parameter space has to be searched. The latter grows exponentially in the number of varia-
tional parameters involved, making determining them an NP problem itself [65]. To overcome
these drawbacks, a novel quantum optimization strategy, termed the guided quantum walk
(GQW), will be introduced in this section. The guided quantum walk is based around the
concept of a coinless discrete quantum walk (see section 2.2.4) and is inspired by the clas-
sical simulated annealing algorithm. The aim of this algorithm is to provide approximate
solutions with high success probabilities efficiently, with numbers of operations that scale
linearly in the numbers of qubits involved and an optimization phase that is constant in its
complexity. In doing so, the guided quantum walk has a direct relationship to the QAOA
and increases the understanding of its dynamics for certain sets of variational parameters. A
detailed comparison of the GQW to the QAOA and to the AQA will be given in section 2.4.

2.3.1. Movement on directed graphs
The guided quantum walk is an optimization strategy operating on oriented graphs, using
the dynamics of the quantum system to accumulate probability near the solution state of
the optimization problem in question. A classical analogue of the algorithm is a simplified
variant of the simulated annealing strategy [105]. By using a constant low temperature, the
process selects an initial guess Z at random from the total set of all possible solutions Z
and then improves it step by step by applying small adjustments (i.e. checking solutions
in its neighbourhood) and keeping only those changes that yield overall improvements with
respect to some metric. The idea of the guided quantum walk is to achieve a similar process
in a quantum system by assigning all 2N basis states to a graph structure with a quantum
walker that moves along directed edges connecting them. Here, the directed edges resemble
the evaluation process based on the aforementioned metric in the classical algorithm. The
goal is to create an oriented graph in such a way that starting from any node, a directed
path towards the solution node is given. Since, however, the internal structure (e.g. the
solution state Zgs) is unknown beforehand, designing a problem-specific graph, with all nodes
featuring exactly one directed edge pointing towards Zgs, is generally not possible. Instead,
the approach taken here relies on a general graph layout, providing the basic framework of the
walker’s movement. In addition to this, a problem-specific metric is used to guide the walker
within each step towards the solution state. Moreover, a set of variational parameters allows
adapting the walker’s dynamics to individual problem instances. While not being restricted
to certain kinds of graphs, the hypercube layout (see e.g. Fig. 2.4) will be considered in the
following due to its ease of implementation.

51

2. Quantum optimization algorithms

The guided quantum walk uses a variational wave function ansatz in which the state of the
quantum system, initialized in the equal superposition of all basis states ∣+⟩⊗N , is transformed
using an alternating sequence of discrete time evolutions. The first evolution considered here
concerns the movement of the quantum walker on the graph, described via the Hamiltonian
ĤM . With respect to a continuous quantum walk, ĤM is termed the driving Hamiltonian,
with ĤM = ∑N−1

i = 0 σ̂
x
i in the case of the hypercube mapping (see section 2.2.4). Solving the

corresponding Schrödinger equation (see Eq. 1.6), the dynamics of the quantum walker
are described via the time evolution operator ÛM(tM) = exp (−i ĤM tM), with tM ∈ [0, π)
denoting the evolution time. Note that ÛM (tM) is π-periodic. In order to understand the
effects of ÛM(tM) on the state vector, it is useful to first consider a system initialized in
one of the computational basis states ∣Ψ⟩, e.g. ∣Ψ⟩ = ∣0 0 . . . 0⟩. Applying one discrete time
evolution yields:

∣Ψ⟩ e−i ĤM tM

ÐÐÐÐÐ→ ∣Ψ′⟩ (2.37)

=
N−1
∏
i = 0
[cos (tM) I − i sin (tM) σ̂x

i] ∣Ψ⟩ (2.38)

= (cos (tM) −i sin (tM)
−i sin (tM) cos (tM)

)
0
⊗ ⋅ ⋅ ⋅ ⊗ (cos (tM) −i sin (tM)

−i sin (tM) cos (tM)
)

N−1

⎛
⎜⎜⎜
⎝

ψ0 0 ... 0 = 1
ψ0 0 ... 1 = 0

⋮
ψ1 1 ... 1 = 0

⎞
⎟⎟⎟
⎠

(2.39)

=
N

∑
l = 0
(−i)l cosN−l (tM) sinl (tM)

´¹¹¹¸¹¹¶
Kl(tM)

⎡⎢⎢⎢⎢⎣
∑

S∈{s0,...,sN−1}∆(S,Ψ)=l

∣S⟩
⎤⎥⎥⎥⎥⎦
, (2.40)

with ∆ (S,Ψ) referring to the Hamming distance of the computational state ∣S⟩ with respect
to the initial state ∣Ψ⟩, i.e. the number of spin flips required to change ∣S⟩ into ∣Ψ⟩. In doing
so, Eq. 2.40 reveals that the application of ÛM(tM) causes probability transfers between
the computational basis states, hence resembling the movement of the quantum walker on
the graph in terms of a propagating probability wave. Thus, depending on the Hamming
distance of each basis state to the initial state ∣Ψ⟩, each node stores Kl (tD)2 amount of
probability after one evolution under ĤM . Consequently, the walker’s movement can be un-
derstood in terms of discrete step sizes l depending on the evolution time tM . Hence, each
coefficient Kl denotes a different order of interaction, allowing only (Nl) states S of a Ham-
ming distance ∆ (S,Ψ) = l to exchange probability. When considering each coefficient Kl

as a function of tM , the algorithm is able to control the walker’s movement by selecting
certain ranges of interaction orders. This is possible, since each Kl features unique extrema
tM = k π ± arctan(

√
l

N−l) with k ∈ N, i.e. an evolution time tM that maximizes the probabil-
ity transfer Kl(tM) (see e.g. Fig. I.9 in appendix I). Consider for example Fig. 2.4, featuring
an N = 4 qubit hypercube graph, and ∣Ψ⟩ = ∣0000⟩. Choosing tM = π, the system is restricted
to zeroth order interactions only, hence the probability (quantum walker) will remain at
∣0000⟩ (l = 0). In contrast to this, evolving the system for tM = 4π/3, causes a probability
wave to emerge at the blue node and spread across the graph’s connections. Eventually, the
probability wave will have its peak among the group of yellow nodes (l = 3) with decreasing
probabilities towards the groups of increasing Hamming distance ∣∆(S,Ψ) − 3∣. Here, the

52

2.3. Guided quantum walk

probability distribution depends on the strength of Kl(tM) and describes the measurement
probabilities to obtain the quantum walker at a specific node in the graph. Note that re-
garding approximate solutions to optimization problems, only the combined probability of
a Hamming-weight group and its distance to the solution state is of interest. Motivated by
this observation, the evolution time tM will not be considered as a fixed constant, as for
example in a continuous quantum walk (see section 2.2.4), but rather as a variational pa-
rameter, called βi henceforth, allowing to select at every iteration i the range of step-sizes the
quantum walker moves. Assuming the chosen graph layout provides sufficient connections
between the nodes, the algorithm can adapt to arbitrary problem instances.

To this point, the dynamics presented describe a quantum walker that moves along undi-
rected graphs connecting the basis states depending on the variational parameters βi. The
movement is undirected since no information regarding the optimization problem is included
yet, yielding a uniform spread of the probability wave across the states. In order to incorpo-
rate the problem’s properties into the movement of the quantum walker, the guided quantum
walk considers the cost function C(Z) as a metric to distinguish connected states Z in the
system and thus guide the walker towards the solution state (state of lowest cost). This
approach is inspired by the observation of the immense splitting of energy levels occurring in
real world exact cover problems (see e.g. Fig. 2.1), causing only relatively low degeneracies,
hence suggesting the cost as a sufficient metric to evaluate the direction of movement of
the quantum walker. Consequently, the algorithm introduces a second time evolution under
the problem Hamiltonian ĤC (see Eq. 2.5), i.e. ÛC = exp (−i ⋅ ĤC ⋅ tC) with the evolution
time tC , before the application of each driving evolution ÛM . In doing so, the algorithm
is able to rank each state depending on its distance to the solution state (given the state
energy as a metric) such that the quantum walker knows at each step the correct direc-
tion to propagate in. The method chosen here relies on the constructive and destructive
interference of probability waves propagating from each basis state, such that the initially
undirected edges in the graph become directed (see e.g. Fig. 2.5). This is achieved by en-
forcing a phase gradient, −∆EB,A ⋅ γi, between pairs (B, A) of connected states with energy
difference ∆EB,A. Note that the evolution time tC of ĤC is replaced by the variational pa-
rameter γi, yielding the identical variational state ∣β,γ⟩ after p walker steps (iterations) as
for the QAOA (see Eq. 2.25). For further investigation, the general transformation of a state
coefficient ψJ (∣Ψ⟩ = ∑2N

J = 0ψJ ∣J⟩) after one iteration of the guided quantum walk (ÛC and
ÛM evolution), using ∆EJ1,J2 = EJ1 −EJ2 = ⟨J1∣ĤC ∣J1⟩ − ⟨J2∣ĤC ∣J2⟩, and ∆αJ1,J2 = αJ1 − αJ2

denoting the differences in the complex phases, is given by:

ψJ = rJ e
−iαJ (2.41)

ÛC(γ)ÐÐÐ→ rJ e
−i (αJ + γ⋅EJ) (2.42)

ÛM (β)ÐÐÐ→
N

∑
l=0
(−i)l ⋅ cosN−l (β) sinl (β)

´¹¹¹¸¹¹¹¶
Kl(β)

⋅
⎡⎢⎢⎢⎢⎣

∑
S∈{s0,...,sN−1}∆(S,J) = l

rS e
−i (αS + γ⋅ES)

⎤⎥⎥⎥⎥⎦
(2.43)

= rJ e
−i (αJ + γ⋅EJ)

⋅
⎡⎢⎢⎢⎢⎣
K0 − i K1 (

rJ∧1

rJ

e−i [∆αJ∧1,J + γ⋅∆EJ∧1,J] + . . .)

53

2. Quantum optimization algorithms

⋮

(−i)N−1
KN−1 (

rJ∧(2N−2)

rJ

e−i [∆α
J∧(2N−2),J + γ⋅∆E

J∧(2N−2),J] + . . .)

(−i)N KN (
rJ∧(2N−1)

rJ

e−i [∆α
J∧(2N−1),J + γ⋅∆E

J∧(2N−1),J])
⎤⎥⎥⎥⎥⎦
, (2.44)

Figure 2.5.: The figure shows the graph structure of a 4 qubit exact cover problem. Each
node denotes one computational basis state ∣Ψ⟩ (possible solution strings to the
optimization problem) and different colours are used to group the nodes by their
Hamming weight. In contrast to Fig. 2.4, the nodes are horizontally positioned
based on their assigned energy value E = ⟨Ψ∣ĤC ∣Ψ⟩. Moreover, the graph is now
oriented, such that all edges point in the direction of lower energy. Note that
the solution node (∣0000⟩ here) has the smallest energy, yielding no outgoing
connections.

2.3.2. Controlling the walker’s movement
After having introduced the basic framework describing the movement of the quantum walker
on a directed graph, the key idea of the GQW is to apply certain restrictions to the way
the variational parameters β and γ are selected, in order to ensure that the probability
wave propagates along the directed connection in the graph. As a consequence, the guided
quantum walk can be understood as a subspace of the more general QAOA, in which it
is hoped that optimal combinations of variational parameters can be obtained more easily,
hence significantly reducing the number of circuit evaluations in the optimization phase.

54

2.3. Guided quantum walk

Spread of the quantum walker: The first restriction can be motivated by demanding
that the guided quantum walk should induce a probability transfer to the solution state,
hence it must accumulate probability into states near ∣Zgs⟩ (using the state’s energy as a
distance metric). Defining the neighbourhood of the solution state of size ∆E as the subset
of all states that feature a maximum energy difference of ∆E to ∣Zgs⟩, the algorithm must
alter the probability distribution in such a way that the majority of probability is located
in a neighbourhood whose size shrinks as a function of the number of iterations p. There-
fore, the quantum walker, initially distributed equally among the nodes, gets steered step
by step towards the solution state, hence improving the approximate solution with every
iteration. Consequently, the driving evolution ÛM(β) must provide two properties: (1) the
algorithm must provide a mechanism to accumulate probability in low energy states, and (2)
states of different energies must be able to exchange probability. The former can be achieved
via the interaction coefficient K0(β). Regarding the latter, the guided quantum walk con-
siders the coefficient K1(β), enabling probability transfers between basis states of Hamming
distance one. Thus, the first restriction requires:

βi ∈
⎡⎢⎢⎢⎢⎣
π − arctan

√
1

N − 1 , π + arctan
√

1
N − 1

⎤⎥⎥⎥⎥⎦
, (2.45)

with P0 = π and P ±1 = π ± arctan
√

1
N−1 being the peak positions of K0(β) and K1(β), re-

spectively (see e.g. Fig. I.9 in appendix I). Note that K0(β) > 0.5 is fulfilled for any β in
the proposed parameter range, since the peaks of K0(β) and K1(β) overlap. This is a nec-
essary condition in order to provide a probability movement while simultaneously collect
probability in low energy states. For example, using KN(β), with a peak located at β = π/2,
instead of K1(β) to exchange probability between basis states, the algorithm would prohibit
the accumulation of probability, since maximizing KN causes K0 = 0. Hence, considering a
system that already has a large overlap (Pgs > 0.5) with Zgs, applying the driving evolution
would cause a probability exchange between ψZgs ↔ ψZgs∧(2N−1), thus reducing the success
probability Pgs. In this case, the quantum walker would move away from the solution node
and the algorithm would fail to guide the walker sufficiently. Although optimal combination
of variational parameters using βi ∈ [0, π) exist, as demonstrated by the QAOA, the situation
just described, shows the importance of the coefficient K0(β) with respect to the concentra-
tion of probability near Zgs (quality of the approximate solution). While the maximization
of Kl ≥ N/2(β) generally suppresses K0(β), intermediate interaction orders K1 < l < N/2(β), fea-
turing K0 > 0, are also unsuitable here. This is because the maximum amplitude of Kl < N/2
decreases for increasing l, which can be explained by the increasing number of nodes each
basis state is connected to. Therefore, the probability initially located at one basis state is
spread across a greater number of nodes within one iteration, as neighbouring interaction
orders feature similar amplitudes (see e.q. tD = 5/4π in Fig. I.9 in appendix I), making predic-
tions about the walker’s evolution/position more difficult. However, as this will be important
in the design of heuristic models based on the GQW in section 2.3.3, K1(β) is chosen here. In
doing so, the algorithm is able to essentially tune the spreading of the quantum walker in
the directed graph by changing the relative strength of the two coefficients using βi. Here,
βi = π keeps the system stationary and βi = P +1 maximizes interactions within it. Note that
this restriction of β can be understood as a first order Taylor approximation of the driv-
ing evolution ÛM(β) (see Eq. 2.47). Therefore, it ensures graph locality by preventing long
range interactions (tunnelling) in the system, yielding a coinless discrete quantum walk (see
section 2.2.4) within a continuous time evolution:

55

2. Quantum optimization algorithms

e−i⋅ĤM ⋅β =
N−1
∏
i = 0
[cos (β) I − i sin (β) σ̂x

i] (2.46)

β≈π= cosN (β) I − i cosN−1 (β) sin (β) [σ̂x
0 + . . . + σ̂x

N−1] + O (sin2 (β)) . (2.47)

Single directed evolution: After having introduced K0(β) and K1(β) as the two mecha-
nism to control the spread of the quantum walker across the graph, next the directed transfer
of probability between connected nodes will be discussed. Since all interactions in the system
can be considered as independent operations, achieved by the same interference mechanism
K1(β), it is sufficient to focus on a single interaction (connection between two nodes in the
graph). Therefore, consider a system initialized in an equal superposition of two basis states
∣A⟩ and ∣B⟩ with Hamming distance one (∣Ψ⟩ = 1√

2 [∣A⟩ + ∣B⟩] using ψA = ψB = 1/
√

2). Ap-
plying one iteration of the guided time evolution yields the transformation of the state
coefficients ψA = ⟨A∣Ψ⟩ and ψB = ⟨B∣Ψ⟩ according to:

ψA =
1√
2
→ 1√

2
e−i γ⋅EA [cosN (β) − i cosN−1 (β) sin (β) e−iγ⋅∆EB,A] (2.48)

= 1√
2
e−i γ⋅EA[cosN (β) − cosN−1 (β) sin (β) sin (γ ⋅∆EB,A)

− i cosN−1 (β) sin (β) cos (γ ⋅∆EB,A)], (2.49)

ψB =
1√
2
→ 1√

2
e−i γ⋅EB [cosN (β) − i cosN−1 (β) sin (β) e+iγ⋅∆EB,A] (2.50)

= 1√
2
e−i γ⋅EB[cosN (β) + cosN−1 (β) sin (β) sin (γ ⋅∆EB,A)

− i cosN−1 (β) sin (β) cos (γ ⋅∆EB,A)], (2.51)

with EA = ⟨A∣ĤC ∣A⟩ and EB = ⟨B∣ĤC ∣B⟩ > EA denoting the state energies and ∆EB,A =
EB − EA > 0. Note that in the following discussion the real parts of the complex numbers
in the square brackets of Eq. 2.49 and Eq. 2.51 will be called in-phase amplitudes and the
imaginary parts are termed out-of-phase amplitudes. The goal of the guided quantum walk
is to cause a probability transfer from ψB to ψA, since ∣A⟩ features a smaller energy then
∣B⟩, bringing it closer to the solution state Zgs. This is achieved by increasing (decreasing)
the complex amplitude of ψA (ψB) during the evolution. Since Eq. 2.49 and Eq. 2.51 differ
only in their in-phase amplitudes, the probability exchange operates on the real parts of the
two state coefficients. This approach is valid, since, on the one hand, ∣K0(β)∣ > ∣K1(β)∣ for
any β ∈ [P −1 , P +1] (see Eq. 2.45), and on the other hand, both states feature the same initial
complex value (i.e. ψA = ψB). Without loss of generality, γi > 0 will be considered in the
following, yielding sin (γ ⋅∆EB,A) > 0 for γ ⋅∆EB,A ∈ (0, π). As a consequence, sgn (K0(β)) =
−sgn (K1(β)) is required to increase (decrease) the complex amplitude of ψA (ψB), yielding
cos (β) < 0 for both cases of even and uneven N (see e.g. Fig. I.9 in appendix I). Here,
sgn (A) denotes the sign-function. Hence, choosing βi ∈ [P −1 , π], a net transfer of probability
towards ∣A⟩ is achieved, assigning a direction to the interaction between the two states. Note
that β ∈ [π,P +1] in combination with γ < 0 is also a valid choice. Consequently, the driving
parameters β must further be restricted to:

56

2.3. Guided quantum walk

If γi > 0: βi ∈
⎡⎢⎢⎢⎢⎣
π − arctan

√
1

N − 1 , π
⎤⎥⎥⎥⎥⎦
, (2.52)

If γi < 0: βi ∈
⎡⎢⎢⎢⎢⎣
π, π + arctan

√
1

N − 1

⎤⎥⎥⎥⎥⎦
. (2.53)

Multiple directed evolutions: After having introduced the main mechanism for probability
transport in the system, the next step is to consider multiple iterations of the guided walk and
their influence on the state amplitudes. In contrast to the aforementioned case in Eq. 2.49
and Eq. 2.51, multiple time evolutions will cause initial phase and amplitude differences,
that can counteract the transfer process into lower energy states. This can be accounted for
by introducing the phase and amplitude parameters α{A,B} and r{A,B}, respectively, which
can be understood as the history of the state amplitudes:

ψA = rA e
−i αA (2.54)

→ rA e
−i (αA + γ⋅EA)[cosN (β)

− rB

rA

cosN−1 (β) sin (β) sin (∆αB,A + γ ⋅∆EB,A)

− i rB

rA

cosN−1 (β) sin (β) cos (∆αB,A + γ ⋅∆EB,A)], (2.55)

ψB = rB e−i αB (2.56)

→ rB e−i (αB + γ⋅EB)[cosN (β)

+ rA

rB

cosN−1 (β) sin (β) sin (∆αB,A + γ ⋅∆EB,A)

− i rA

rB

cosN−1 (β) sin (β) cos (∆αB,A + γ ⋅∆EB,A)]. (2.57)

First, consider the effect of the initial amplitude difference (rA ≠ rB) between the two ba-
sis states. In the case of EA < EB, rA > rB is assumed, since the guided quantum walk
(at least initially) causes a probability flow towards the lower energy state ∣A⟩. A main
assumption of the interference mechanism introduced above is that ∣K0(β)∣ > ∣K1(β)∣ is
fulfilled for any parameter combination β within the proposed bounds. Thus, by achieving
sgn (K0(β)) = −sgn (K1(β)), the algorithm decreases the probability of ∣B⟩. However, due
to the introduction of amplitude differences, a rescaling of K1(β) based on the quotient
rA,B = rA

rB
of the two complex amplitudes occurs. As a consequence, there exists some r > 1,

such that for any rA,B ≤ r an upper-bound β ∈ [P −1 , π] can be found, such that for any βi ≤ β,
∣K0 (βi)∣ < rB,A ⋅ ∣K1 (βi)∣ is given. If this is the case, then the application of the time evolu-
tion ÛM(β) will yield a negative in-phase amplitude for the higher energy state ∣B⟩. Since
both the in-phase and the out-of-phase amplitudes go quadratically into the calculation of
the state’s probability, an unintentional increase in the probability of ∣B⟩ can be the con-
sequence. In order to prevent this counteracting process, βi > β is required throughout all
iterations i < p of the guided walk. Due to this, the optimal transfer rates β depend on the
number of total iterations p, since rA,B increases as more successful probability exchanges are

57

2. Quantum optimization algorithms

performed on the system. Thus, for large p, it is to be expected that βi will approach π (see
e.g section 2.4.1). This behaviour can be interpreted, as the system reducing its dynamics
(K1(β)) and shifting its focus more towards the exchange of smaller probability fractions. In
that sense, the system operates slower but more carefully, by keeping larger fractons of prob-
ability stationary in lower energy states (K0(β)). Moreover, the derived restriction for β also
limits the out-of-phase amplitude, keeping the controllable in-phase amplitude as the major
contribution to the state’s probability, hence validating the interference mechanism also in
the case of multiple iterations.

Secondly, the effect of the initial phase difference ∆αB,A = αB −αA has to be investigated. The
main problem introduced here is that the total phase gradient ∆ΦB,A = ∆αB,A + γ ⋅∆EB,A,
which is used to guide the probability flow (direction of the edges in the graph) towards lower
energy states, now depends on the history of the states. Thus, in case the initial phases αi

cause a total phase gradient beyond (0, π), counteracting processes emerge, inverting the
direction of the probability flow into higher energy states. An example of this process can be
seen in Fig. 2.8 in section 2.3.4. Since ∆αB,A is the result of several iterations of guided walks,
it is useful to look at the development of the initial phase gradient (i.e. ∆αi

B,A → ∆αi+1
B,A)

caused by one iteration of the ÛC and ÛM evolutions:

∆αi+1
B,A = −(∆αi

B,A + γ ⋅∆EB,A

´¹¹¸¹¹¹¶
∆Φi

B,A

) +∆Θi
B,A, (2.58)

∆Θi
B,A = arg [cos (β)

sin (β) ⋅
rB

rA

+ sin (∆Φi
B,A) − i cos (∆Φi

B,A)]

− arg [cos (β)
sin (β) ⋅

rA

rB

− sin (∆Φi
B,A) − i cos (∆Φi

B,A)] , (2.59)

with arg denoting the complex phase. A three-dimensional plot of Eq. 2.58 is given in Fig. 2.6
using β = 3.0, with ∆Φi

B,A and ri
B,A = ri

B / ri
A denoting the function variables at iteration i. In

order to investigate the evolution of the total phase gradient ∆Φi
B,A throughout multiple

iterations, it is useful to first consider the case of γi = 0 to understand how the system
behaves without external influences. Assuming an initial phase difference ∆α0

B,A ∈ (−π,0), a
probability transfer according to the aforementioned interference mechanism will occur. Since
∆Φ0

B,A = ∆α0
B,A, the direction of the probability flow is from the higher energy state ∣B⟩

towards the lower energy state ∣A⟩. As the system is initialized in the equal superposition
of both states, r0

B,A = 1 is given. This results in a linear dependency between ∆α1
B,A and

∆Φ0
B,A, yielding ∆α1

B,A = ∆Φ0
B,A. Continuing with the second iteration, another probability

transfer towards ∣A⟩ is performed, as the total phase difference between the two states did not
change. In doing so, the quotient rB,A between the complex amplitudes ψA and ψB decreases,
causing the system to move along a path on the surface of Fig. 2.6. The shape of this path
depends on the initial starting point ∆α0

B,A. As a consequence, the relationship between
∆αi+1

B,A and ∆Φi
B,A deviates from the initial linear dependency, causing a change in the total

phase gradient ∆Φi
B,A as more iterations are applied (i.e. the value of ri

B,A shrinks). Hence,
∆Φi

B,A =∆αi
B,A ≠∆Φi−1

B,A in general. By investigating the shape of the surface in Fig. 2.6, one
can see, that the change in the relationship causes initial phase differences and consequently
the total phase gradients to occupy values outside (−π,0) (blue area in Fig. 2.6). Since,
∆Φi

B,A ∈ (−π,0) is required by the aforementioned interference mechanism to direct the

58

2.3. Guided quantum walk

probability flow into lower energy states, counteracting processes will occur that transport
probability back into higher energy states. This, however, causes an increase in the amplitude
quotient ri

B,A, allowing the system to eventually recover ∆Φi
B,A and move back into the blue

area. As a consequence, an oscillation of the system’s probability between the two states will
occur (see e.g. Fig. 2.8 in section 2.3.4). Therefore, the variational parameters γ are necessary,
on the one hand, to cause an initial phase gradient ∆Φ0

B,A in the first place, and on the other
hand, to compensate for the changing relationship between ∆αi+1

B,A and ∆Φi
B,A. The latter

is needed to ensure a sufficient guidance of the walker throughout the iterations by always
shifting the total phase difference ∆Φi

B,A between (−π,0). In doing so, two observations
can be made: First, consider a single connection between two states in the graph. Since
∆EB,A is fixed in this case, ∆Φi

B,A can be precisely controlled via γi. Thus, as the deviations
of ∆αi+1

B,A from ∆Φi
B,A increase, an increase in γi is required in order to assure a correct

guidance of the walker. Secondly, the phase shift achieved by γi depends linearly on the
energy difference ∆EB,A. Therefore, when considering all connections present in the system,
the phase shifts can only be adjusted to subsets of all connections, which feature similar
energy gradients. Interactions, on the other hand, with lower or higher energy differences will
gain significantly smaller or larger phase shifts, respectively, potentially driving counteracting
probability transfers into higher energy states. Due to this, rather than achieving directed
probability exchanges between all pairs of connected states, the guided quantum walk can
only focus on transfers within certain energy ranges at a time.

Figure 2.6.: The plot shows the initial phase gradient ∆αi+1
B,A between two interacting states

after one iteration as a function of the total phase difference ∆Φi
B,A and the

complex amplitude quotient ri
B,A (see Eq. 2.58). Note that β = 3.0 and ∆E > 0

are used. Moreover, the parameter space corresponding to ∆αi+1
B,A ∈ [−π,0] is

marked blue.

59

2. Quantum optimization algorithms

2.3.3. Heuristic model
In the previous two sections, the basic framework of the guided quantum was introduced,
yielding a novel strategy for obtaining approximate solutions to combinatorial optimization
problems using the concept of a coinless discrete quantum walker propagating on an ori-
ented graph. In doing so, the GQW can be understood as an instance of the general QAOA,
subject to several restrictions that govern the choice of the variational parameters β and
γ. Based on these restrictions, a heuristic model termed HGQW will be developed in this
section, allowing to select parameter sets according to the walker’s movement proposed in
section 2.3.2. Its derivation process will be structured into two steps, by first considering
the unrealistic situation where all information about a problem instance is available. This
includes especially the solution state as well as the distribution of the computational basis
states across the individual energy levels, for which the problem has to be solved before-
hand. While not being applicable to the real world, the goal of this investigation is to gain
further insights into the distribution of optimal sets of variational parameters following the
principles of a guided quantum walk. In doing so, the task of finding 2p parameters will
be mapped to certain functions based on the problem’s properties, which will then be ap-
proximated, yielding the HGQW model. Note that the following considerations will focus
on exact cover problem instances as introduced in section 2.1.1. This is done as a first step,
because the interference mechanism used by the guided quantum walk to direct the prob-
ability flow in the graph is entirely based on the state’s energy as a metric to distinguish
connected states. Since, the exact cover problems feature numerous distinct energy levels
with low degeneracies, it was found that these instances are particularly well suited for the
GQW. 2-SAT problem instances, involving a high degeneracy of only a few unique energy
levels (see section 2.1.2), will be treated in section 2.3.5.

The HGQW model is composed of two functions β (i,λ) and γ (i,λ), with i < p denoting the
index of iteration and λ = {λ1, . . . , λM} being a fixed set of M additional parameters. Their
goal is to determine sets of variational parameters β and γ which follow closely an optimal
route through the graph according to the dynamics discussed in section 2.3.2. This approach
is inspired by the observations of [9, 67, 83, 92, 93, 106] who found that general patterns in the
optimal distribution of variational parameters across different problem instances can occur
in the QAOA. However, till today, there is not much understanding in why these patterns
exist and how they can be obtained efficiently [92]. Most approaches presented in previous
work focussing on the derivation of optimal parameter sets either rely on the application
of machine learning algorithms [70, 94, 95, 107, 108] or iterative procedures [67, 96, 106,
109]. Here, the latter use pre optimized sets of parameters (usually obtained via brute-force
search) for small p ≈ 4 and then iteratively extrapolate them to larger p. While these attempts
work well on small problem instances that require only a few QAOA iterations, they quickly
become infeasible as the number of qubitsN or the number of iterations p increase. Regarding
iterative procedures, this can be seen as the number of optimization runs increases linearly in
p, while the search space grows exponentially with each run. Neural networks, on the other
hand, need an initial training phase, requiring numerous optimized parameter sets for various
problem instances. As p and N increase, it becomes exponentially harder to obtain such
training sets, since for example the solution states for the NP-complete problems must be
determined. Moreover, long access times to quantum computers (or simulators) are necessary
for training. The main problem when optimizing variational parameters in the QAOA is
that the observed patterns can in principle follow any function, as the exponentially growing
search space is complex and non-convex, featuring numerous local minima. As a consequence,
localizing the global minimum or at least good enough local minima, providing a sufficient

60

2.3. Guided quantum walk

success probability, is in general a difficult task [30]. The advantage of the HGQW model is
now that instead of performing a blindfolded search in the parameter space, the knowledge
about the dynamics of the guided quantum walk are incorporated into the optimization
process. This allows reducing the search to certain patterns of the variational parameters,
which are then adjusted to the individual problem instances by tuning the set of additional
parameters λ. The latter is done using the Nelder-Mead optimizer [110] in an outer-classical
optimization loop based on the minimization of ⟨Ψ∣ĤC ∣Ψ⟩ (the procedure is identical to
Fig. 2.3). Since the number M of parameters will be fixed, the complexity of the optimization
process, for obtaining approximate solutions, becomes constant, compared to exponentially
growing in p. Note that the AQA (see section 2.2.3) resembles a similar approach of reducing
the optimization work required by the QAOA by exploiting its connection to continuous
quantum annealing. A comparison between the QAOA, the AQA and the HGQW will be
given in section 2.4.3.

Spread coefficients β: The distribution of the variational parameters β, controlling the
overall spread of the quantum walker among the nodes, is restricted to [P −1 , π] using
γ > 0. Given the discussion in section 2.3.2, this parameter range is necessary to ensure
graph locality and hence to allow for a sufficient accumulation of probability in low energy
states. The HGQW model considers here a constant distribution of β = λ1, providing a plain
movement of the walker across the graph that is independent of the problem’s properties. In
doing so, the propagation of the probability wave is entirely altered by the phase coefficients
γ, hence reducing the among of interplay between the two transformations (ÛM(βi) and
ÛC(γi)) and hopefully simplifying the classical optimization process. This ansatz is moti-
vated by two observations: (1) Tuning the optimization parameter λ1 separately for each of
the 48 exact cover instances reveals almost identical distributions of the spread coefficients β
that are independent of the problem’s size or structure (see Fig. 2.12b in section 2.4.1). Al-
though the set of investigated problem instances is limited, this suggests that (at least in
the GQW) the variational parameters β resemble a universal property of the quantum walk,
which seem to only depend on the total number of iterations p (see section 2.4.1). (2) More-
over, the system is initialized in the equal superposition state. Thus, all connections in the
graph will contribute to the walker’s movement at every iteration i. Hence, it is not possible
to follow a classical path through the graph, as all paths must be considered simultane-
ously. Therefore, it is impractical to control the probability transfer rate between two nodes,
but rather use the phase coefficients γ to alter the interference processes individually. Con-
sequently, a fixed value is proposed for β:

Spread coefficients: β (i,λ) = λ1, (2.60)

λ1 ∈
⎡⎢⎢⎢⎢⎣
π − arctan

√
1

N − 1 , π
⎤⎥⎥⎥⎥⎦
. (2.61)

Phase coefficients γ: The variational parameters γ are used as a tool to guide the spread
of the quantum walker across the graph. By introducing complex phase differences −γi ⋅∆EB,A

between connected nodes (A,B), the algorithm is able to alter the interference mechanism
and thus control the amount of probability that is transferred between pairs of basis states. As
mentioned in section 2.3.2, a main property of this mechanism is its locality, meaning that the

61

2. Quantum optimization algorithms

alignment (direction of probability transfer) in the graph can only be controlled for subsets
of all edges simultaneously. This is because the phase shift induced by γi is proportional to
the energy difference ∆EB,A. Hence, γi ⋅∆EB,A must be within (0, 2π), such that ∆Φi

B,A

can be set between 0 and π, yielding a probability transfer into lower energy states. As
a consequence, edges governing small energy gradients ∆EB,A, i.e. γi ⋅ ∆EB,A << 1, will
effectively gain no additional phase shift by the cost evolution, instead they are entirely
influenced by the initial phase differences ∆αB,A. On the other hand, edges featuring γi ⋅
∆EB,A >> 1 will experience significant phase shifts. However, since the total phase ∆Φi

B,A is
taken modulo 2π, the resulting phase gradient can be anywhere within 0 and 2π. In both
cases, the algorithm has no direct control over the dynamics of the interactions, potentially
causing contradicting probability transfers and unintended changes to ∆αB,A. As a result, the
guided walk can quickly become uncontrollable, once the total phase gradients ∆ΦB,A;i in the
system diverge. In order to prevent this, the HGQW model proposes a sequential activation
of the edges based on their energy gradients ∆E, by monotonically increasing the strength
of the phase coefficients γi. This ansatz is motivated by the observation that compensating
probability transfers (into higher energy states) are based on the strength of the initial phase
differences ∆αB,A. Hence, beginning with a small γ0, only edges of large energy gradients will
gain sufficient phase differences, thus enabling directed probability exchanges, while all other
edges will remain unaltered, leaving their initial phase gradients ∆αB,A intact. Next, γ1 > γ0
is chosen for the second iteration. On the one hand, this allows compensating the effects
of the changing relationship between ∆αi+1

B,A and ∆Φi
B,A as the probability gradient ri

B,A

decreases (see section 2.3.2). On the other hand, it enables additional edges to participate
in the probability transfer, as sufficient phase gradients can be achieved with smaller energy
gradients. In doing so, the algorithm iteratively enables the probability exchange between
states in decreasing order of their energy gradient, while keeping control over the initial
phases of still disabled interactions. Thus, a barrier, corresponding to the aforementioned
neighbourhood of the solution node, forms, which prevents high energy states from extracting
probability from low energy states. Here, the underlying assumption is that the average
energy gradient decreases monotonically for decreasing node energies and that the HGQW
is able to transfer the probability towards Zgs faster than the occurrence of compensating
probability exchanges.

Based on the above considerations, the HGQW model proposes a sampling of γi inspired
by the distribution of the energy gradients within the graph. The latter can be determined
by first calculating the energy spectrum E = ⟨Ψ∣ĤC ∣Ψ⟩ of all computational basis states
∣Ψ⟩. Next, according to the hypercube mapping (see e.g. Fig. 2.5), the energy gradient
∆EB,A of each edge in the graph is derived and stored in an array L. The latter is sorted
based on the largest node energy involved in each connection (see blue dots in Fig. 2.7). As a
result, choosing any element ∆E ∈ L, its corresponding probability transfer can be enabled
(assuming a neglectable initial phase gradient ∆α) via the phase coefficient γ = λ2

∆E . Here,
the idea is that the phase gradient γ ⋅∆E = λ2 necessary to enable an edge does not depend
on the node’s energy (position in the graph) nor on the state of the quantum walk, but
is identical for all connections. Note that this phase gradient is tuned via the optimization
parameter λ2. In order to sample the set of p variational parameters γi from L, the HGQW
model uses a conservative ansatz by only considering the largest energy gradients (small-
est phase coefficients) at each energy level. Moreover, to ensure a monotonically increasing
distribution, each element at position i in L is further replaced by the largest element in
the subset {L[j] ∣ j ≤ i}. This is done in order to postpone the appearance of compensat-
ing probability transfers, as otherwise γi < γi−1 might occur when sampling L in inverse

62

2.3. Guided quantum walk

order. Note that L is sorted based on the largest energy level connected to an edge instead
of its energy gradients, because the idea is that the guided quantum walk will focus on the
extraction of probability from high energy states first, until continuing with intermediate
and low energy states. In doing so, it serves the picture of a shrinking neighbourhood con-
taining the majority of probability, such that the approximate solution should improve with
every additional iteration. As a final step, a polynomial f (E) of degree 6 is fitted to L (see
red curve in Fig. 2.7) and the set of variational parameters is then sampled exponentially
from f (Ei) ⋅ λ2 using Emax ⋅ (e−xi − 1) / (e−λ3 − 1) with xi = i/ (p − 1) (see red triangles in
Fig. 2.7). Here, λ3 denotes an additional optimization parameter, which adjusts the expo-
nential sampling speed. This non-uniform sampling of f (E) is chosen, as the step size of
the quantum walker in the energy domain decreases for decreasing energy gradients. Hence,
the walker initially moves faster towards states of smaller energy than it does near the end
of the algorithm, where the majority of probability is already located close to the solution
state (see monotonically decreasing f (Emax −E) in Fig. 2.7). An example of a set of phase
coefficients obtained this way is depicted in Fig. 2.8 for the EC_16_1 exact cover problem.

Figure 2.7.: The plot shows the distribution of the largest energy gradients ∆EB,A as a func-
tion of the energy levels EB (blue points). The red curve denotes a polynomial
f (E) of degree 6 that is fitted to L. f (E) is used for sampling the variational
parameters λ2 / γi. An example for p = 40 is presented by the red triangles. The
data shown is obtained for the EC_16_1 exact cover problem.

63

2. Quantum optimization algorithms

A main observation from the strategy depicted above is that the function f (E) has a similar
shape across all investigated exact cover instances. As a consequence, the HGQW model tries
to approximate f (E) in order to make the guided quantum walk accessible to real-world
problem, where the energy spectrum is generally not available. Due to the logarithmic shape
of f (Ei) and the exponential sampling method of Ei, γi = λ2 / (1 − xi) using xi = i / (p − 1)
is considered in the following. In addition to this, three optimization parameters, λ3, λ4 and
λ5, are also introduced into the model, in order to separately adjust the exponential scaling
of γ (i,λ) for small, intermediate, and high x-ranges, respectively, yielding:

Phase coefficients: γ (i,λ) = λ2
1

λ3 ⋅xi +λ4
− λ5

λ3 +λ4

with xi =
i

p − 1 , (2.62)

λ1 ∈
⎡⎢⎢⎢⎢⎣
π − arctan

√
1

N − 1 , π
⎤⎥⎥⎥⎥⎦
, λ2 > 0, λ3 > 0, (2.63)

λ4 ∈ (0,1], λ5 ∈ [0,1). (2.64)

Note that a naive strategy of approximating f (E) via a polynomial of degree 6 is generally
impractical, due to the way the individual parameter sets λ get evaluated. Here, the quality of
the polynomial can only be rated by the overall success probability/energy expectation at the
end of the algorithm. Since a polynomial of degree 6 can describe functions of various different
shapes and the parameter search space is generally highly non-convex, the optimization
process is likely to tune λ into a local minimum that is not corresponding to a guided
quantum walk. Hence, numerous optimization runs are typically necessary. Using Eq. 2.62,
on the other hand, ensures a distribution based on the principles of a GQW, thus hopefully
accelerating the classical optimization process.

A comparison between Eq. 2.62 and the exact distribution obtained via f (E) for the EC_16_1
exact cover problem is given in Fig. 2.8. Note that both models have been tuned using at
most 1000⋅M optimization steps within 20 separate optimization runs, with the best (highest
success probability) runs shown in the figure. In doing so, both model produce almost iden-
tical β (i,λ) distributions, with relative differences of 0.036%, while the γ (i,λ) coefficients
agree within 13.58%. As a consequence, it can be concluded that the proposed approxima-
tion is able to sufficiently reproduce f (E), thus realizing guided quantum walks. Also note
that slight differences between the models do not necessarily go along with a decrease in the
success probability. In fact, slightly higher success probabilities are usually found using the
approximate model, which is probably due to the increased number of degrees of freedom
compared to the exact approach.

64

2.3. Guided quantum walk

(a) Spread coefficients β (i, λ)

(b) Phase coefficients γ (i, λ)

Figure 2.8.: The plots show the sets of variational parameters β (i,λ) and γ (i,λ) determined
by the HGQW model for the EC_16_1 exact cover problem (p = 40). The model
has been tuned twice using at most 1000⋅M optimization steps within 20 separate
optimization runs (the best ones shown), considering the exact calculation (Ex,
light blue) of f (E) as well as its approximation (Ap, dark blue). The red curve
indicates the relative differences (∣Ex −Ap∣ / Ex) between both approaches, with
maximum differences of 0.036% for β (i,λ) and 13.58% for γ (i,λ).

65

2. Quantum optimization algorithms

2.3.4. Dynamics of the HGQW model
In the previous section, the HGQW model has been introduced as a heuristic approach for
sampling sets of variational parameters β (i,λ) and γ (i,λ) based on common properties in
the distributions of the energy gradients between connected states in the graph through-
out various exact cover instances. Since several assumptions regarding the behaviour of a
quantum system under certain parameter sets have been proposed during its derivation, the
gradual evolution of a system based on the HGQW model will be studied in this section. This
is done, by analysing the transformation of the full state vector ∣Ψi⟩ = ∑J ψ

i
J ∣J⟩ throughout

the iterations i < p. Hence, snapshots of ∣Ψ⟩ are taken after each time evolution, with iM
indexing state configurations after the driving evolution ÛM (βiM

), and iC referring to snap-
shots obtained after the cost evolution, ÛC (γiC

). In doing so, the measurement probabilities
(P i

J = ∣Ψi
J ∣

2), as well as the initial phases αiM

J and total phases ΦiC

J are captured within each
iteration. Sufficiently controlling the latter is important, as it determines the ability of the
HGQW model to guide the walker through the graph. Regarding the visualization, a pro-
jection of the aforementioned metrics onto the energy levels of ĤC will be considered in the
following. Thus, the states are first grouped by their respective energy level E, followed by
calculating the mean value of each metric within each group. Choosing the energy domain
for investigation is motivated by the fact that the guided quantum walk operates on energy
levels not on individual basis states, hence causing global probability transfers based on the
energy differences. Therefore, it is to be expected that states of the same energy govern sim-
ilar dynamics, which is also encouraged by the regular distributions obtained for the three
metrics (see e.g. Fig. 2.8). Note that the EC_16_1 exact cover instance will be considered in
this section.

Since the guided quantum walk shares a great connection to conventional quantum walks
(see section 2.2.4), the dynamics of the HGQW model will be compared to the evolution
of a quantum system exposed to an instance of a trotterized continuous quantum walk
(CQW model). The CQW model uses the same sequence of unitary time evolutions, with an
identical set of spread coefficients β (i) = 2.948 as the HGQW model and a set of constant
phase coefficients γ (i) = 0.05. The latter corresponds to γ (0,λ) in the HGQW model, hence
allowing to investigate the influence of an exponential increase in the phase shifts on the
evolution of a quantum walker.

(a) CQW model: P i
E (b) HGQW model: P i

E

66

2.3. Guided quantum walk

(c) CQW model: αiD

E (d) HGQW model: αiD

E

(e) CQW model: ΦiC

E (f) HGQW model: ΦiC

E

Figure 2.8.: The plots show the evolution of a quantum system under the influence of the
CQW model (a, c, e) and the HGQW model (b, d, f) as a function of the iteration
index i. The evolution is obtained by sampling the full state vector ∣Ψ⟩ after each
time evolution and grouping the computational basis states according to their
energy E. In doing so, (a) and (b) present the measurement probabilities P i

E,
(c) and (d) show the initial phases αiD

E , and (e) and (f) portray the total phases
ΦiC

E . Note that each metric is averaged over all states governed by an energy
level. Moreover, data points (E, i) that feature P i

E/P i
0 ≥ 10−2 are marked blue in

(b), (d) and (f). The data is obtained for the EC_16_1 exact cover problem using
the parameter set shown in Fig. 2.8 for the HGQW model. The CQW model
uses β (i) = 2.948 and γ (i) = 0.05, corresponding to β (0,λ) and γ (0,λ) of the
HGQW model.

67

2. Quantum optimization algorithms

CQW model: The evolutions of the mean measurement probabilities P i
E, the mean initial

phases αiM

E and the mean total phases ΦiC

E as a function of the energy level E and the
iteration index i are depicted in Fig. 2.9a, Fig. 2.8c and Fig. 2.8e, respectively. Note that
Pgs does not reach unit probability, as the transfer rate γ̃ ∝ β (i) /γ (i) is not optimized
for the problem instance in question. However, the characteristic oscillation of the success
probability in the iteration index i (i.e. the evolution time) is still present in Fig. 2.9a. The
oscillation has an approximate period of ∆i = 10 and can also be observed in the distribution
of αiM

E and ΦiC

E . The latter demonstrates the strong connection between the probability
transport through the graph and the complex phase gradients across the basis states, as
discussed in section 2.3.2. In general, ∆i depends on the strength of the transfer rate, such
that an increase in γ̃ causes a faster oscillation, since the quantum walker propagates faster
through the graph. This behaviour can be understood as follows: Beginning at i = 0, the
system is initialized in the equal superposition state ∣+⟩⊗N , causing identical measurement
probabilities P 0

E and initial phases α0M

E at all energy levels E. The subsequent cost evolution
ÛC decreases the complex phase Φ0C

E at each energy level proportional to its energy E (see
Fig. 2.8e). Hence, Φ0C

E becomes monotonically decreasing in E, such that the phase gradients
∆Φ0C

A,B = Φ0C

B − Φ0C

A between arbitrary connected states (A,B) (EA < EB) in the graph lay
within (−π,0), yielding global probability transfers into lower energy states (see interference
mechanism in section 2.3.2). This can be seen in Fig. 2.9a, as the average measurement
probability of low energy states increases, while it decreases for high energy states. However,
in doing so, the probability quotient r1

B,A = ψ1
B/ψ1

A decreases, in turn causing phase shifts
∆Θ1

A < ∆Θ1
B via the driving evolution ÛM (see Eq. 2.58). Since these phase shifts increase

the relative complex phase of ψB with respect to ψA, the probability transfer counteracts the
phase shifts given by the cost evolution ÛC (see Fig. 2.6). As a consequence, at i ≈ 2 both
phase shifts become equal, yielding a minimum in Fig. 2.8c and Fig. 2.8e. For 2 < i < 5, αiM

E

starts to increase, causing a decrease in the phase gradients ∣∆ΦiC

B,A∣. Hence, the probability
transfer through the graph slows down, as the interference interaction makes greater use of
the out-of-phase amplitudes (see discussion in section 2.3.2). At i ≈ 5, the control evolution
is no longer able to compensate the initial phase gradients, causing ∆ΦiC

B,A > 0 and thus
probability exchanges into higher energy states (see maximum of Pgs in Fig. 2.9a). However,
this forces ri

B,A to increase again, reducing the phase gradients caused by the driving evolution
and thus decelerating the increase in the initial phases (see Fig. 2.8c). At i ≈ 8, 0.05 ⋅∆EB,A ≥
∆Θi

B,A, achieving a decrease in the initial phase (see maximum in Fig. 2.8c and Fig. 2.8e). At
i ≈ 10, ∆ΦiC

B,A becomes negative again, guiding the probability flow back into lower energy
states. Hence, the above process repeats itself.

HGQW model: The CQW model demonstrates, that the interplay between the complex
phase shifts caused by the driving and cost evolutions is the limiting factor for guiding the
probability flow towards the solution state. This is because, once the probability quotients
ri

B,A of connected states become too small, γi ⋅∆EB,A = const cannot compensate ∆Θi
B,A

any more, hence inverting the interference mechanism. To prevent this, the HGQW model
proposes an exponentially increasing parameter set γ (i,λ), which is hoped to compensate
the increase in αiM

E , such that ∆ΦiC

B,A < 0 ∀ iC . The evolution of a quantum system under
the influence of the HGQW model is depicted in Fig. 2.8 (b, d, f), regarding the mean
measurement probability P i

E, the mean initial phases αiM

E and the mean total phases ΦiC

E ,
respectively.

68

2.3. Guided quantum walk

These figures reveal two distinct areas in the dynamics of the quantum walk: The first area
can be located between i = 0 and i ≈ 25. Here, the system’s evolution is governed by the same
processes as described above for the CQW model. Hence, the phase gradients of connected
states are controlled via the cost evolution ÛC , causing a global probability transfer towards
lower energy states. This in turn decreases ri

B,A, yielding a gradual increase in the initial
phases αiM

E , which counteracts the intended phase gradients ∆ΦiC

B,A. Consequently, a wave
pattern occurs in Fig. 2.8d and Fig. 2.8e, with maxima located at i ≈ 10 and i ≈ 20. In contrast
to the CQW model, however, the HGQW model manages to keep full control over the phase
gradients, hence achieving ∆ΦiC

B,A < 0 ∀ iC ≤ 25. In doing so, the algorithm is able to prevent
probability transfers into high energy states by effectively adjusting the strength of the phase
shifts γ (i,λ) ⋅∆EB,A to the increase in ∆Θi

B,A caused by the driving evolution ÛM . This
can be understood as the introduction of anharmonicity into the previously (approximately)
harmonic oscillation. Therefore, the HGQW model can suppress compensating effects and
maintain a guided probability transport for a longer period than the CQW model. Note that
the occurrence of stairs in the three figures suggest that small adjustments to the proposed
variational parameter set might further improve the model’s performance (see section 2.4.4).

Continuing with the second area, i.e. i > 25, the dynamics of the system begin to change. Start-
ing at high energy states first, this can be explained by the continuous decrease of the phase
gradient ∆ΦiC

B,A with every iteration iC . Since, ∆ΦiC

B,A is taken modulo 2π by the inter-
ference mechanism, with ∆ΦiC

B,A mod 2π ∈ (π,2π) (∆ΦiC

B,A mod 2π ∈ (0, π)) transferring
probability into the lower (higher) energy state ∣A⟩ (∣B⟩), the HGQW model cannot guide
the probability flow once the complex phases of the two basis states diverge too far. This
phenomenon happens locally for each basis state, depending on the energy gradients to its
connected states in the graph. As a result, a valley of rapidly changing initial and total
phases emerges in Fig. 2.8d and Fig. 2.8f, respectively. Consequently, unpredictable prob-
ability transfers occur in Fig. 2.9b. Although these processes could potentially compensate
the probability transport induced in the first area, the HGQW model uses the observation
that the aforementioned valley occurs in decreasing order of the energy levels. This can be
understood as high energy states typically feature large energy gradients ∆E to their con-
nected states, while ∆E tends to decrease as the states get closer to the solution node (see
e.g. Fig. 2.7). Based on this observation, the HGQW model assumes that it can transport
the majority of probability fast enough towards Zopt, such that intermediate energy levels
can effectively form a barrier to protect it from unpredictable transfers. To verify this, all
data points (E, i) with P i

E/P i
0 ≥ 10−2 have been marked blue in the three figures. The re-

sulting subset of states can be viewed as the neighbourhood of the solution state introduced
in section 2.3.1. Since the blue area does not overlap with the aforementioned valley, the
assumption is confirmed. Moreover, the blue area fits to the exponential sampling strategy
proposed in section 2.3.3. This shows, that the heuristic model is able to sufficiently guide
the quantum walker through the graph.

2.3.5. Adjustments to the HGQW model
The investigation of the dynamics of a quantum walk under the HGQW model in the previous
section demonstrated that the guided quantum walk is able to sufficiently direct a probability
flow from high energy states towards the ground states. As such, it can be understood
as a continuous quantum walk that is actively pushed in the direction of low energy in
order to suppress compensating probability transfers in the originally harmonic oscillation
of Pgs. However, so far only exact cover instances according to section 2.1.1 have been

69

2. Quantum optimization algorithms

studied. As this problem class is characterized by a high number of distinct energy levels
with low degeneracies (see e.g. Fig. 2.1), it is particularly well suited for a guided walk which
determines the direction of propagation based on the energy gradient between connected
states in the graph. In contrast to this, 2-SAT problems as introduced in section 2.1.2
feature only a few equally spaced energy levels (see e.g. Fig. 2.2). This type of optimization
problems is generally considered as hard to solve on quantum computing devices, due to high
degeneracies and small energy gaps, yielding long optimal annealing times [71, 73]. In the
following, the application of the HGQW model on 2-SAT instances will be investigated, by
first studying the dynamics of the probability flow given the 2SAT_16_1 problem followed by
the proposal of an adjusted heuristic model, termed HGQW-A, adapting to the differences in
the problem structure. In doing so, success probabilities similar to the application on exact
cover problems become achievable (see section 2.4.2).

(a) P i
E (b) P i

∆(J,Zgs)

Figure 2.9.: The plots show the evolution of the probability distribution obtained by the
HGQW model for the 2SAT_16_1 problem as a function of the iteration index i
(see section 2.3.3). Plot (a) presents the mean probability P i

E of the total system
as a function of the energy level E. Plot (b) focusses on the mean probabilities
P i

∆(J,Zgs) of the first excited energy level with respect to the Hamming distance
∆ (J,Zgs) of a state ∣J⟩ to the solution state ∣Zgs⟩.

Figure 2.9a depicts the evolution of the mean probability distribution P i
E throughout the

iterations i as a function of the energy level E. The data is obtained for the 2SAT_16_1
problem instance using the HGQW model. The figure reveals a similar initial dynamic of
the global probability flow in the graph as seen in section 2.3.4, yielding a steady probability
transport in the direction of low energy states. However, for i ≥ 5 the probability flow
stops and a saturation of the success probability Pgs ≈ 4.81% can be observed. Interestingly,
the probability distribution throughout the whole system remains approximately constant,
hence becoming independent of the number of iterations i. This phenomenon suggests the
existence of internal barriers, which prohibit the probability exchange across the energy
levels at a certain point in the algorithm. In order to understand this behaviour, Fig. 2.9b
shows the evolution of the measurement probability P i

∆(J,Zgs) within the first energy level
(E = 4) as a function of iteration index i and the Hamming distance ∆ (J,Zgs) between

70

2.3. Guided quantum walk

the states ∣J⟩ and the ground state ∣Zgs⟩. According to section 2.3.2 and the hypercube
mapping (see e.g. Fig. 2.5), the proposed parameter range for the spreading coefficients β
restrict the walker’s movement, such that only transitions between basis states of Hamming
distance one are allowed. Simultaneously, the guided quantum walk demands that probability
transfers are always directed towards lower energy states, which in case of the first energy
levels means in the direction of the ground state. However, regarding the considered 2-SAT
instances, the high degeneracy of the energy levels means that states of various different
Hamming weights will feature the same energy E. Since, in case of the first energy level, the
algorithm can only guide the probability flow into ∣Zgs⟩ for basis states with ∆ (J,Zgs) = 1,
states that feature ∆ (J,Zgs) ≥ 2 must first interact with states of smaller Hamming distance
∆ (J,Zgs). However, these states are only connected to other states of the same or higher
energy. Hence, they already resemble the lowest energy state in their connection path, causing
a local accumulation of probability in the graph. This process can be seen in Fig. 2.9b, as a
significant fraction of probability is held in 6 ≤∆ (Ψ,Ψgs) ≤ 12 for i ≥ 20. Consequently, this
probability is not exchanged towards ∆ (Ψ,Ψgs) = 1, hence limiting the maximum success
probability. In order to estimate the latter, the fraction of all 2N states, which can be reached
from the ground state using a path of strictly increasing state energies in the graph can be
used:

P est
gs =

∣{∣J⟩}∃ path between ∣J⟩ and ∣Zgs⟩ of strictly increasing energies ∣
2N

(2.65)

Given Eq. 2.65, P est
gs ≈ 5.71% is found, agreeing with the actually obtained success probability

of Pgs ≈ 4.81% for the 2SAT_16_1 problem. Note that similar estimations were found for
all investigated 2-SAT instances, while P est

gs > 95% was determined regarding the exact
cover problems. The latter shows that the large number of energy levels sufficiently allows
distinguishing the individual basis states.

The above considerations, although neglecting interactions with other energy levels (un-
wanted probability transfers into higher energy states can in general also provide a path
for probability to reach the ground state), suggest that adjustments to the proposed heuris-
tic model in section 2.3.3 are necessary to achieve a sufficient guidance of the quantum
walker. As demonstrated above, the main challenge lies in the distribution of connected
states across the energy levels, with numerous of them featuring zero energy gradient. Since
the states’ energies are determined by the number of violated clauses (see section 2.1.2), the
number of distinct energy levels is a fixed entity, ruling out naive approaches like recasting
the 2-SAT problems into exact cover instances or choosing a different driving Hamiltonian
ĤM to change the graph layout. Instead, the heuristic model must adapt throughout the
iterations to the probability distributions within the energy levels, in order to allow proba-
bility exchanges between states of the same energies. Two possible approaches are presented
below:

• The first ansatz is based around the observation, that the hypercube mapping pro-
hibits direct transfers of states of different energies in case they have a Hamming
distance greater than 1. As a consequence, probability exchanges within an energy
level are required until the Hamming distance is sufficiently reduced. Using a different
graph layout, on the other hand, can in principle allow interactions between states
of great Hamming distance. Thus, one idea could be to use an alternating sequence,
that switches between multiple driving evolutions and thus graph layouts, in order to

71

2. Quantum optimization algorithms

provide sufficient dynamics at all states and prevent immovable probabilities. In doing
so, the guided quantum walk is extended into a subspace of the more general quantum
alternating operator ansatz (see section 2.2.2). Although this approach provides high
degrees of freedom, generally allowing to reach high success probabilities (Pgs ≈ 1),
finding an optimal set of driving evolutions is not a trivial task, as the state distribu-
tion across the energy levels is unknown. Thus, without a technique for sampling these
driving Hamiltonians, this ansatz is impractical.

• The second approach focusses on the dynamics of the hypercube mapping, providing
several sub graphs for the states’ interactions based on the coefficients Ki (see sec-
tion 2.3.2). So far, the system is restricted to zero and first order interactions, due to
the proposed parameter bounds, βi ∈ [P −1 , π]. Extending this range to βi ∈ [π/2, π]
would allow the system to perform tunnelling and thus exchange probability across
greater Hamming distances, ∆ (J,Zgs) ≥ 2. Thus, combining multiple sub graphs in
an alternating sequence could again provide sufficient dynamics to prevent stationary
probabilities. A major problem of this ansatz, however, is that the guided quantum
walk relies on the ability to accumulate probability at low energy states, which is con-
trolled via the coefficient K0. Choosing βi close to π

2 , which is required for transactions
of large Hamming distance, K0 is suppressed, making the distribution of the probabil-
ities and phases uncontrollable. Consequently, the quantum walk becomes unguided.

Inspired by the above strategies, an adjusted parameter space for the spread coefficients β
will be explored in the following. Still relying on the hypercube layout, this ansatz introduces
additional energy gradients between connected states while keeping track of the evolution
of the probability and phase distributions. The approach is inspired by a bijective mapping
between the computational basis states that can be achieved via the driving evolution ÛM :
Considering an arbitrary state ∣J⟩ = ∣j0, . . . , jN−1⟩ ∈ H2N . Flipping the computational state
of every qubit ji, ∣J⟩ is transferred into its inverse state ∣J̄⟩ ∈ H2N . This transition can
be achieved by applying Pauli-x operators, σ̂x

i , to each qubit i, corresponding to an β = π
evolution under ÛM . The graph of the inverse states will henceforth be called the inverse
graph and its energy distribution the inverse energy spectrum. By transforming the state
vector between both pictures, the connections between the initial state amplitudes do not
change, e.g. two interacting amplitudes ψA and ψB still interact in the inverse graph (ψĀ

and ψB̄), since their Hamming distance remains the same. However, the energy distribution
of the states can change, thus ∆EA,B ≠ ∆EĀ,B̄ in general (see e.g. Fig. 2.10). Consequently,
it is hoped that by switching between both pictures, the degeneracy of the energy levels
can be lifted by artificially introducing directed edges in the inverse graph between nodes of
identical energies in the regular graph. Hence, this procedure can be understood as a mixing
operation that tries to make originally immovable probability accessible to the ground state.

In section 2.3.1 Eq. 2.44 has been derived describing the evolution of the full state vector
∣Ψ⟩ = ∑J ψJ ∣J⟩ under the transformations ÛC and ÛM . The proposed parameter range for the
spread coefficients β, yields a selection of the interaction orders K0 and K1 while suppressing
Ki≥2. By introducing the inverse graph and the transition operation, exp(−iπĤM/2), the
selection of the coefficients Ki changes, such that whenever the system transforms between
both pictures, KN−1 and KN are maximized. Although this mean K0 ≈ 0 (see e.g. Fig. I.9 in
appendix I), in contrast to the aforementioned second approach, the system keeps control
over the accumulation of probabilities and phases, since it can track the exchanges between
both graphs. Thus, it is not important whether the probability is concentrated in the ground
state or the inverse ground state, since a bijective mapping between them exists. In doing

72

2.3. Guided quantum walk

(a) Regular graph

(b) Inverse graph

Figure 2.10.: The figures show the regular (a) and inverse (b) graph structure of a hypercube
mapping for anN = 4 qubit 2-SAT problem. Each node denotes a computational
basis state ∣J⟩ and different colours indicate its Hamming distance ∆ (J,Zgs)
to the solution state ∣Zgs⟩ = ∣0 0 0 0⟩. The states are ordered along the x-axis
according to their energy E. Note that the solution state has only in the regular
graph the lowest energy.

73

2. Quantum optimization algorithms

so, KN and KN−1 provide the same accumulation and interaction mechanisms as K0 and
K1, respectively, with the only difference being a swap between the two graphs. Concluding
these observations, the parameter range is extended to βi ∈ RL∪RH = [P −1 − π/2, P +1 − π/2]∪
[P −1 , π]. Equations 2.67 and 2.68 summarize the evolution under both parameter spaces for
the interaction of two basis states ∣A⟩ and ∣B⟩ with EA = ⟨A∣ĤC ∣A⟩ and EB = ⟨B∣ĤC ∣B⟩,
respectively:

ΨA = rA e−i αA (2.66)

β ∈ RHÐÐÐ→ rA e−i (αA + γ⋅EA)[cosN (β)

− rB

rA

cosN−1 (β) sin (β) sin (∆αB,A + γ ⋅∆EB,A)

− i rB

rA

cosN−1 (β) sin (β) cos (∆αB,A + γ ⋅∆EB,A)], (2.67)

β ∈ RLÐÐÐ→ rĀ e−i (αĀ + γ⋅EĀ)[sinN (β)

− rB̄

rĀ

cos (β) sinN−1 (β) sin (∆αB̄,Ā + γ ⋅∆EB̄,Ā)

− i rB̄

rĀ

cos (β) sinN−1 (β) cos (∆αB̄,Ā + γ ⋅∆EB̄,Ā)]. (2.68)

It is important to note here that, in contrast to the regular graph, the solution node in the in-
verse graph does in general not correspond to either the largest or smallest energy state, but
can often be found at intermediate energy levels (see e.g. Fig. 2.10). Thus, it is not possible to
sufficiently guide the quantum walker towards Zgs while using the inverse picture, as depend-
ing on the basis state the direction of optimal probability transfer varies. Instead, the inverse
graph will be used exclusively to provide additional dynamics to the system. Consequently,
the proposed parameter range includes both transfers into higher (βi ∈ [π/2, P +1 − π/2]) and
lower (βi ∈ [P −1 − π/2, π/2]) energy states within the inverse picture. Note that in the regular
graph, RL is restricted to [P −1 − π/2, π/2].

Based on the above considerations, an adjusted heuristic model, termed HGQW-A, for guided
quantum walks on 2-SAT problem instances will be introduced in the following. This model
uses an alternating sequence of the regular and inverse graph, controlled via two sets of spread
coefficients βR (i,λ) and βI (i,λ). Similar to the HGQW model, a constant distribution
is used for both parameter sets, determined by the optimization parameters λ1 and λ2,
respectively. In doing so, βR (i,λ) is applied at even iterations (i mod 2 = 0) and βI (i,λ)
is used during odd iterations (i mod 2 = 1). Hence, after every guided probability transfer,
the system switches into the inverse graph and performs a mixing operation. This process
continues for p− k (even) iterations, followed by k iterations using βi = βR (i,λ) +π/2. Here,
the latter (leaving the system in the regular graph) is motivated by the observation that
near the end of the algorithm, the majority of probability is typically located within the first
energy levels at states ∣J⟩ with ∆ (J,Zgs) = 1, such that no mixing operation is required. In
fact, pursuing the alternation typically results in a reduced success probability, as the solution
state leaks probability in the inverse graph. Note that k = 2 was found optimal in the
experiments conducted in section 2.4.2. Regarding the phase coefficients γ, the HGQW-A

74

2.3. Guided quantum walk

model also alternates between two parameter sets depending on the active picture. In the
regular graph, the same distribution γ (i,λ) as used by the HGQW model is applied (see
Eq. 2.62). Within the inverse picture a parabola shape, hence providing small initial and final
mixing, was found optimal. The HGQW-A model is summarized below, with an example
distribution obtained for the 2SAT_16_1 instance shown in Fig. 2.10.

Spread coefficients: β (i,λ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

λ1 , i even or i ≥ p − k

λ2 , otherwise
(2.69)

Phase coefficients: γ (i,λ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

λ3
1

λ4 ⋅xi +λ5
− λ6

λ4 +λ5

, i even or i ≥ p − k

λ7 ⋅ [λ8 − (x − λ9)2] , otherwise
(2.70)

λ1 ∈ [P −1 −
π

2 ,
π

2] , λ2 ∈ [P −1 −
π

2 , P
+
1 −

π

2] , λ3 > 0, (2.71)

λ4 > 0, λ5 ∈ (0,1], λ6 ∈ [0,1), (2.72)

λ7 > 0, λ8 > 0, λ9 ∈ [0,1), (2.73)

xi =
i

p − 1 . (2.74)

(a) Spread coefficients β (i, λ)

75

2. Quantum optimization algorithms

(b) Phase coefficients γ (i, λ)

Figure 2.10.: The plots show the sets of variational parameters β (i,λ) and γ (i,λ) de-
termined by the HGQW-A model for the 2SAT_16_1 problem instance (p =
40). The model has been tuned using at most 1000 ⋅M optimization steps
within 20 separate optimization runs (best one shown).

Given the distribution of variational parameters in Fig. 2.10, the evolution of the mean
measurement probabilities P i

E (P i
∆(J,Zgs)) of the whole system (the first energy level) as

a function of the iteration index i and the energy level (Hamming distance ∆(J,Zgs) to
the solution state Zgs) for the aforementioned 2SAT_16_1 problem is depicted in Fig. 2.11a
(Fig. 2.11b). Note that since the model alternates between the regular graph (even i) and the
inverse graph (odd i), only the data obtained at even i is shown. Comparing the evolution
of P i

E to Fig. 2.9a, the HGQW-A model achieves significantly improved dynamics of the
probability transport, as throughout all iterations a probability flow towards the ground
state is established. Hence, a significantly higher success probability Pgs ≈ 95% compared
to Pgs ≈ 4.81% via the HGQW model is observed at the end of the algorithm. This can be
understood with respect to the evolution of P i

∆(J,Zgs) in Fig. 2.11b. While the HGQW model
causes probability to remain stationary between 6 ≤ ∆ (Ψ,Ψgs) ≤ 12 (see Fig. 2.9b), as no
sufficient phase gradient could be established between states of the same energy level, the
transformation into the inverse graph allows the HGQW-A model to artificially create an
energy gradient and thus a phase difference between the states. In doing so, despite an initial
increase in probability at high Hamming distances (10 ≤∆ (Ψ,Ψgs) ≤ 16 for i < 10), Fig. 2.11b
reveals that the HGQW-A model is able to iteratively transport probability towards smaller
hamming distances, hence making it accessible to the solution state. Note, however, that
compared to the HGQW model, the probability transport seems to require more iterations,
as odd iteration numbers do not contribute to the guided transfer (see steeper initial increase
of Pgs in Fig. 2.9a compared to Fig. 2.11a).

76

2.4. Performance analysis

(a) P i
E (b) P i

∆(J,Zgs)

Figure 2.11.: The plots show the evolution of the probability distribution obtained by the
HGQW-A model for the 2SAT_16_1 problem as a function of the iteration index
i. Plot (a) presents the mean probability P i

E of the total system as a function
of the energy level E. Plot (b) focusses on the mean probabilities P i

∆(J,Zgs) of
the first excited energy level with respect to the Hamming distance ∆ (J,Zgs)
of a state ∣J⟩ to the solution state ∣Zgs⟩.

The above observations verify the use of the inverse graph as a tool to artificially and
temporarily increase the dynamics in the system. With respect to problem instances that
feature intermediate degeneracies of their energy levels (lying between the exact cover and
2-SAT problems investigated in this thesis), these findings also suggest that an adjusted
alternation sequence between the regular and inverse graph might allow solving other types
of combinatorial optimization problems as well. Moreover, an improved sampling strategy of
the phase coefficients in the inverse graph could further accelerate the probability transfer
process. Hence, additional research is needed.

2.4. Performance analysis
In the previous sections, two heuristic strategies, namely the HGQW model and the HGQW-
A model, have been developed for deploying guided quantum walks on both exact cover
and 2-SAT problem instances. By studying the evolution of a quantum system under these
models, i.e. the development of the complex phases and measurement probabilities of the
computational basis states, it was verified that both strategy are able to create and guide a
probability flow in the direction of the solution state. Using a hypercube graph layout and
the state’s energy as an evaluation metric, the models provide two sampling functions β (i,λ)
and γ (i,λ) for the sets of spread and phase coefficients, respectively. In doing so, the guided
quantum walk is executed analogously to the QAOA (see appendix B.1 for the quantum
circuit) by deploying a hybrid quantum-classical procedure of tuning the sets of variational
parameters (see Fig. 2.3). However, in contrast to the QAOA, the heuristic models focus on a
set of 5 to 9 optimization parameters λ, instead of adjusting β and γ individually. Motivated

77

2. Quantum optimization algorithms

by patterns commonly occurring in optimized distributions of the variational parameters,
the hope is that by refining the shape of the sampling functions and thus collectively tuning
the individual parameters, the optimization process can be significantly simplified, yielding
a more convex search space and a reduced convergence time. It is important to note here
that the functions proposed for the two models are based on common characteristics in the
internal structure of their respective problem type (e.g. numerous distinct energy levels with
low degeneracy in case of the studied exact cover problems). Consequently, the heuristic
models are restricted to a subspace of the more general guided quantum walk, which only
limits the system to zero and first order interactions and introduces a directed interference
mechanism based on the chosen driving evolution (see section 2.3.2). In order to verify the
success of the HGQW model and the HGQW-A model, the scaling of the success probability
Pgs both as a function of the number of iterations p and the number of qubits N in the
system will be studied in the following sections. Moreover, the guided quantum walk will be
compared to the QAOA (see section 2.2.2) and the AQA (see section 2.2.3).

To ensure comparability between the investigated optimization algorithms, all data presented
in the following sections is obtained via SEQCS, using similar program codes for simulating
sets of exact cover and 2-SAT problems. Regarding each problem class, 48 individual opti-
mization instances will be considered, which are separated into smaller sample groups of size
8 according to the number of involved qubits N ∈ {10, 12, 14, 16, 18, 20} (see appendix G
and appendix H). The exact cover problems are generated randomly using the algorithm
described in appendix G.1 and the 2-SAT instances are taken from the pool of problems
provided by Mehta et al. [73]. Note that all investigated problems feature a unique ground
state, and the success probability Pgs will be averaged over the highest probabilities obtained
within each sample group. Moreover, exact cover and 2-SAT problems will be treated sep-
arately due to the significant differences in their energy spectra (compare e.g. Fig. 2.1 and
Fig. 2.2 in section 2.1).

Regarding the classical optimization phase of the three algorithms, the Nelder-Mead opti-
mizer [110] will be used, which assesses the performance of the variational parameter sets
based on a reduction of the approximation ratio Ar (see Eq. 2.7). In doing so, the algorithms
are compared in a realistic context, where no additional information about the energy spec-
trum and the solution state of the optimization problem in question is available. Note,
however, that using Ar instead of Pgs during the parameter optimization typically causes
smaller success probabilities, due to the differences in the search spaces of the two metrics:
Considering for example two different sets of variational parameters, which result in the final
states ∣Ψ1⟩ = 1

2 (∣A⟩ + ∣C⟩) and ∣Ψ2⟩ = ∣B⟩, respectively, with ∣A⟩ denoting the solution state
and EA ≈ EB ≪ EC . With respect to the approximation ratio, the classical optimizer would
prefer the state ∣Ψ2⟩, as it gives an overall reduction of the energy expectation ⟨Ψi∣ĤC ∣Ψi⟩
compared to ∣Ψ1⟩. In fact, ∣Ψ2⟩ might even correspond to a local maximum in the parameter
space of 1 −Ar, while ∣Ψ1⟩ lies close to a local minimum. In contrast to this, an evaluation
based on Pgs would tune the system towards ∣Ψ1⟩, since PΨ1 ≫ PΨ2 . In this picture, ∣Ψ2⟩
resembles a global minimum, as it yields zero success probability, and ∣Ψ1⟩ is in the neigh-
bourhood of the global maximum. These contradicting ratings of the two parameter sets
demonstrate that for both metrics, even though they share the same global maximum (the
solution state), the distribution of their local maxima differs in general [30].

These differences in the search spaces could harm the performance of the optimization algo-
rithm in case the variational parameters β and γ are tuned unconstrained, as done by the
QAOA. This is because an optimization process based on Ar could propose parameter sets

78

2.4. Performance analysis

that feature low energies, but also small success probabilities (see e.g. ∣Ψ2⟩). Moreover, as
demonstrated by Willsch et al. [30], the success of the optimization process also greatly de-
pends on the classical optimization algorithm (e.g. Nelder-Mead, BFGS or SLSQP [111]) as
well as the number of optimization parameters used, with the latter influencing the size and
complexity of the search space and the former determining the way the algorithm traverses
through it. This can be understood, as classical optimizers often get stuck at suboptimal local
maxima, due to the non-convexity of the search space, hence requiring multiple optimization
runs to determine the solution state with sufficient accuracy. Interestingly, concerning the
guided quantum walk, only a weak dependence of the scaling of Pgs on both the optimization
algorithm and the evaluation metric was observed during the simulations. This can be ex-
plained, on the one hand, by the relatively small search space (5 (9) dimensional for HGQW
(HGQW-A) model), which, in combination with the specially designed sample functions
(β (i,λ) and γ (i,λ)), seems to be sufficiently convex. On the other hand, the increase in
the success probability throughout the guided walk is highly coupled to the decrease in the
overall energy of the system. This is because, the guided quantum walk achieves a directed
probability flow from high energy states towards low energy states, gradually increasing the
probability located in the shrinking neighbourhood around the solution state. Thus, the
GQW prohibits final state configurations, which (with high probability) include basis states
of greatly different energies (see e.g. ∣Ψ1⟩). Consequently, the two search spaces seem to
mostly align. For comparison, the results of the GQW simulations using the Pgs evaluation
are provided in Fig J.12 in appendix J.1.

2.4.1. Performance of the HGQW model
The distribution of the success probabilities Pgs obtained by the HGQW model on the set
of exact cover problems (see appendix G) is depicted in Fig. 2.12a as a function of the
number of iterations p and system size N . The presented data corresponds to the average
probabilities of the best (highest Pgs) parameter sets obtained in each sample group within
200 optimization runs using a maximum of 4000 queries to the classical optimizer. Note that
a three-dimensional plot of the data is presented in Fig. J.10 in appendix J.1. In doing so,
Fig. 2.12a reveals common characteristics in the distributions of Pgs as functions of p across
all investigated system sizes N . With a rapid increase of the success probability for p ≤ N ,
followed by a beginning saturation of Pgs for p ≫ N , the behaviour of the guided quantum
walk can be separated into two regions of operation.

The first region, spanning from p = 0 to p ≈ N , concerns the situation where the number of
iterations p is less than the number of qubits N in the system. This provides a challenge
to the HGQW model, since the GQW restricts the quantum walker to zero and first order
interactions only, while the largest Hamming distance to the solution state in the system is
N . Thus, limiting probability transfers to pairs of basis states of Hamming distance one, the
algorithm is not able to establish a probability flow from states ∣J⟩ with ∆ (J,Zgs) > p into
the solution state ∣Zgs⟩. This limits the maximally achievable success probability, which can
be approximated by the fraction of reachable state within p iterations (given by the sum
of binomial coefficients ∑p ≤ N

k = 0 (
N
k
)) with respect to the total number of states in the graph

2N . Consequently, the rescaled shape of this fraction as a function of p can approximately be
found in Pgs(p) within the first region. For example, the N = 18 and N = 20 sample groups
feature a greatest increase of Pgs at p ≈ N/2 (centre of the region), with decreasing slopes
towards the region’s boarders. However, for small system sizes (e.g. N = 10 and N = 12)
a steep increase in the success probability is also obtained at small p < 6, which can be

79

2. Quantum optimization algorithms

understood as follows: In contrast to the original definition of the guided quantum walk,
the HGQW model applied within the first region uses an extended parameter range for the
spread coefficients β set to [π/2, π]. This was motivated by the observation that for small p
(i.e. p ≪ N), the classical optimizer repeatedly sets βi = P −1 (lower bound of the parameter
region). By allowing the optimizer to go below P −1 , the HGQW model is able to obtain
significantly higher success probabilities at small p and small N . The mean distributions
of the chosen spread coefficients are depicted in Fig. 2.12b with respect to the parameter
sets shown in Fig. 2.12a. Note that P −1 is indicated by horizontal dashed lines for each
system size. The plot reveals, that for each sample group, values below the proposed lower
bound P −1 are occupied at p ∈ [0,≈ 3/4N]. Although this generally causes a reduction of the
accumulation coefficient K0 (see e.g. Fig. I.9), this behaviour allows the HGQW model to
access states of Hamming distance ∆ (J,Zgs) > p by performing large range interactions,
hence increasing the amount of probability that can be transferred into ∣Zgs⟩. Note that
this effect is most noticeable at small systems sizes, as the relative increase in the number
of reachable states from the solution state with respect to the total number of basis states
decreases in N (see e.g. [(N2) − (

N
1)] /2N), yielding only minor improvements for large N .

Besides that, Fig. 2.12a also shows that for none of the investigated problem instances, unit
success probability is obtained at p = N . Since in this case, the quantum walk is no longer
restricted by the states’ Hamming distance to the solution state, this observation is most
likely caused by the algorithm’s ability to transfer probability between connected states in
the graph. This is because only probability fractions (determined by β and the phase gradient
∆Φ) can be exchanged between basis states during one iteration. Moreover, the number of
iterations required for a probability PJ (initially located at a state ∣J⟩) to reach the solution
state is equal to ∆ (J,Zgs). Hence, states that have a great Hamming distance to ∣Zgs⟩ in
the graph will generally transport less probability into the solution state during the same
number of iterations. As a result, Pgs(p = N) decreases approximately exponentially as a
function of the system size N , due to the linear increase of the mean Hamming distance of
all basis states (see dashed lines in Fig. 2.12a).

Regarding the second region of operation, i.e. p ∈ [N,80], the slope of Pgs decreases signifi-
cantly, causing an approximately linear scaling that seems to saturate for large p below unit
probability (Pgs ∈ [79%,95%] at p = 80). With respect to Fig. 2.12b, this behaviour can be
understood by the monotonic increase of β as a function of p, which causes an increase of
the quotient cos (β) / sin (β). In doing so, the GQW is able to maintain a guided probabil-
ity transfer for larger probability gradients ri

B,A across connected states by postponing the
appearance of the valley of unpredictable probability transfers (see section 2.3.4). However,
note that an increase of β coincides with a decrease in the interaction coefficient K1, thus
limiting the amount of probability that gets exchanged during one iteration between two
states. Interestingly, almost identical distributions of the spread coefficients are observed
across and within the sample groups. This suggests, that β is a problem independent pa-
rameter, which is only influenced by the number of iterations p and the underlying graph
structure. This could allow sampling the spread coefficients from a predefined function, re-
ducing the number of optimization parameters of the heuristic models by one. However, this
is left for future work. Besides that, Pgs(p) seems to saturate at a value below one. Most
likely, this is caused by immovable probability, due to insufficient energy gradients at some
nodes in the graph (see discussion in section 2.3.5). This suggests that mixing operations
(i.e. transforming the system into the inverse graph) as well as small adjustments to the
variational parameters β and γ might significantly improve the performance of the HGQW
model (see section 2.4.4).

80

2.4. Performance analysis

(a) Success probability Pgs

(b) Spread coeffiencts β

Figure 2.12.: The plots show the distribution of the success probability Pgs (a) and the spread
coefficients β (b) obtained by the HGQW model as a function of the total
number of iterations p for the exact cover problems given in appendix G. The
data is derived using a maximum of 4000 evaluations within 200 runs of the
Nelder-Mead optimizer, focussing on a reduction of the approximation ratio
Ar (see Eq. 2.7). For each problem instance and each circuit depth p, the best
(highest Pgs) parameter set is chosen, and the data is averaged within the
sample groups (i.e. across problems of the same size N). The individual sample
groups are distinguished by colour, and dashed lines indicate p = N and β = P −1 ,
respectively.

81

2. Quantum optimization algorithms

Concluding this section on the HGQW model, a weak exponential scaling of the success
probability Pgs with respect to the system size N is found, yielding e.g. Pgs (N) ∝ 2−0.13N

at p = 10 and Pgs (N) ∝ 2−0.06N at p = 20. Hence, the scaling improves for larger p, causing
a close-to linear distribution once the algorithm enters the second region of operation for
all system sizes. This can be explained by the differences in the slopes of Pgs within the
two regions. Since the transitioning point scales linearly in N and Pgs increases significantly
faster in the first region than in the second region, the probability gradient decreases between
systems operating in different regions. Hence, the guided quantum walk seems to be able
to achieves high success probabilities within numbers of iterations p that scale only linearly
in the system size N . This property makes it a promising candidate for near-term NISQ
devices, where the circuit depth is limited due to noise and decoherence [37]. Moreover, with
respect to the Pgs to p ratio, the HGQW model seems to be most effective for p ∈ [N,2N].

2.4.2. Performance of the HGQW-A model
The performance of the HGQW-A model is analysed analogously to the HGQW model, by
studying the distribution of the success probability as a function of the number of iterations
p and the system size N with respect to the set of 2-SAT problems given in appendix H. The
data presented in Fig. 2.13a corresponds to the highest success probabilities averaged over
each sample group using 200 optimization runs with up to 4000 evaluations for each problem
instance. A three-dimensional plot of Fig. 2.13a is given Fig. J.11 in appendix J.1. Note that
Fig. 2.13b and Fig. 2.12c show the distribution of the spread coefficients βi in the regular
and inverse graph, respectively. In doing so, two regions of operation can be distinguished in
the scaling of Pgs(p), yielding a similar shape in the probability distributions as previously
obtained for the HGQW model (see section 2.4.1).

The first region of operation, located between p = 0 and p ≈ 2N , corresponds to the situation
where the success of the GQW is limited by the number of iterations p with respect to the
Hamming distance of the basis states to the solution state. Thus, as p increases, Pgs scales
approximately like a rescaled sum of binomial coefficients (see section 2.4.1), yielding the
steepest increase in success probability at the region’s centre with decreasing first derivatives
towards the region’s boarders. Note that the model was again allowed to occupy spread
coefficients β below the proposed parameter bound P −1 − π/2 within the first region (see
Fig. 2.13b). Similar to Fig. 2.12b, the classical optimizer hence uses high interaction orders
(i.e. β < P −1 −π/2) to artificially increase the number of accessible states in the graph in case
of p < 10. As this increase with respect to the total number of states decreases as a function
of N , the effect is most noticeable at small system sizes, causing a significant increase in
Pgs for small p (see e.g. 10 and 12 qubit case in Fig. 2.13a for p ≤ 6). Continuing with the
second region (i.e. p ∈ [2N + 1, 80]), the success probabilities on all investigated system sizes
seem to saturate between 88% and 94% at p = 80. This behaviour can again be explained by
the distribution of the spread coefficients β. Here, both Fig. 2.13b and Fig. 2.12c show an
average increase of β as a function of p towards π /2, hence maintaining a guided quantum
walk for larger probability gradients ri

B,A. Concerning the regular graph, similar distributions
to figure 2.12b are observed, with a rapid increase of β for p ≤ 10, followed by a relatively fast
saturation around 1.45. Again, as only minor differences are observed between the system
sizes of 12 to 20 qubits, β (i,λ) might be replaceable by a problem independent distribution,
decreasing the number of optimization parameters by one. Moreover, regarding the inverse
graph, only values within the lower half of the proposed parameter spectrum are used by
the optimizer (i.e. β ≤ π/2), suggesting a reformulation of the parameter range in order to

82

2.4. Performance analysis

further simply the optimization process. However, compared to Fig. 2.12b the distribution
of β includes significant fluctuations, especially within the first region of operation. This
indicates that the proposed sampling function γ (i,λ) (see Eq. 2.70) is not optimal and
additional research is required regarding the system’s behaviour in the inverse graph in
order to derive an improved heuristic sampling function.

Although both the HGQW model and the HGQW-A model obtain similar shapes of the Pgs

distributions within the two regions of operation, both models differ significantly regard-
ing the sizes of these regions. Here, the HGQW-A model requires approximately twice as
many iterations to access the probability of all states in the graph compared to the HGQW
model, causing a significantly slower probability transfer. The latter was also observed in sec-
tion 2.3.5 and can be explained by the small number of directed edges in the regular 2-SAT
graphs. Thus, going from p to p + 1 does not necessarily increase the number of reachable
states by (N

p+1), as probability transfers are likely to be blocked by insufficient phase gradi-
ents, due to the high degeneracies of the energy levels. Hence, the HGQW-A model proposes
an alternation between the regular and inverse graph layout, with the latter functioning as
a mixing operation. The success of this ansatz can be seen by the high success probabilities
obtained at large p (Pgs(p = 80) > 88%), which are significantly higher than the success prob-
abilities obtained using only the regular graphs (see Pgs ≈ 5% in section 2.3.5). However, the
probability flow through the graph can only be directed within the regular graph, as in the
inverse graph the interference mechanism cannot distinguish between transfers into states
of lower and higher Hamming distance to the solution state. Therefore, only every second
iteration applies a guided probability transfer, hence increasing the number of iterations
necessary to access all states by approximately a factor of two.

Besides that, the derived distributions also seem to be less dependent on the number of qubits
N . While an approximately exponential decrease in the success probability as a function of N
was found in Fig. 2.12a, the distributions shown in Fig. 2.13a lie closer together and are less
ordered in the system size. For example, similar probabilities are obtained for the N = 14 and
N = 18 qubit problems, with the N = 16 qubit probabilities surpassing both. This observation
suggests that the performance of the guided quantum walk on the 2-SAT instances is less
dependent on the problem size, but on the ability of the mixing operation to overcome
the system’s degeneracies. This can also be seen by the fact that for larger system sizes
(i.e. N = 16 to N = 20 qubit problems) higher success probabilities are derived at p ≥ 60 than
for smaller problem instances (i.e. N = 10 to N = 14 qubit problems). Most likely, this is
related to the only linearly in N growing number of energy levels of the investigated 2-SAT
problems (compare to exponentially growing in N for the exact cover instances). However,
additional research is needed here.

Concluding this section on the HGQW-A model, a weak exponential scaling in N is found,
with e.g. Pgs (N) ∝ 2−0.16N at p = 10 and Pgs (N) ∝ 2−0.01N at p = 40, yielding a close-to
constant distribution within the second region of operation. This demonstrates that the pro-
posed alternating sequence between the regular and inverse picture allows the guided quan-
tum walk to achieve similar success probabilities and scalings as seen for the HGQW model
in section 2.4.1. Although requiring approximately twice as many iterations, the probability
distributions still feature a region of rapidly increasing Pgs that grows seemingly linearly
in N , making the GQW an interesting application on near-term NISQ devices also in the
context of 2-SAT problems.

83

2. Quantum optimization algorithms

(a) Success probability Pgs

(b) Spread coeffiencts β (regular graph)

84

2.4. Performance analysis

(c) Spread coeffiencts β (inverse graph)

Figure 2.12.: The plots show the distribution of the success probability Pgs (a) and the spread
coefficients β (b, c) obtained by the HGQW-A model as a function of the total
number of iterations p for the 2-SAT problems given in appendix H. The data
is derived using a maximum of 4000 evaluations within 200 runs of the Nelder-
Mead optimizer, focussing on a reduction of the approximation ratio Ar (see
Eq. 2.7). For each problem instance and each circuit depth p, the best (highest
Pgs) parameter set is chosen, and the data is averaged within the sample groups
(i.e. across problems of the same size N). The individual sample groups are
distinguished by colour, and dashed lines indicate p = 2N , β = P −1 − π/2 and
β = P −1 − π/2, respectively.

2.4.3. Comparison of the GQW, the AQA and the QAOA
Both the investigations of the HGQW model and the HGQW-A model revealed promis-
ing properties of the guided quantum walk for solving exact cover and 2-SAT problems on
near-term NISQ devices. Among others, a great initial increase of Pgs for p ≤ aN (a = 1 for
HGQW and a = 2 for HGQW-A) was discovered, resulting in intermediate success probabili-
ties (Pgs ≥ 0.5) after already a few iterations (i.e. p = aN /2). For p > aN , where the algorithm
is no longer limited by the accessibility of the basis states, the success probability was found
to saturate, as a general decrease of the spread coefficients causes a rapid drop in the first
derivative of Pgs. Since the scaling of Pgs in the number of qubits N flattens for increasing p,
an almost constant distribution for p > 4N is obtained. Even though the performance of the
proposed heuristic models seems to be limited by some maximal success probability, both
observations (strong scaling in p and weak scaling in N) suggest a competitive performance
of the GQW at intermediate numbers of iterations (i.e. p ≈ 2N = O(10)). In order to verify
this, the performance of the HGQW model and the HGQW-A model will be compared to
two quantum optimization strategies previously proposed in the literature: On the one hand,
the approximate quantum annealing (AQA) model developed by Willsch et al. will be con-
sidered here [30]. Explained in detail in section 2.2.3, AQA is a heuristic approach for solving

85

2. Quantum optimization algorithms

combinatorial optimization problems originating from the trotterized simulation of quantum
annealing. It was motivated by the observation that competitive success probabilities are ob-
tainable in case too large trotter errors are used in the numerical calculation. Consequently,
the AQA focusses on the case of large time steps and thus low to intermediate p, similar
to the GQW. The seconds ansatz that will be considered in the following is the standard
QAOA as developed by Farhi et al. (see section 2.2.2) [65]. Even though both the GQW
and the AQA live in a subspace of the QAOA, the goal of this comparison is to investi-
gate the efficiency of the algorithms in tuning the system into the solution state after the
same number of circuit runs (evaluations of the classical optimizer). This is important, as
for the QAOA the parameter search space grows exponentially in p, while for the AQA and
the GQW it remains constant, with complexities corresponding to p = 0.5 (AQA), p = 2.5
(HGQW model) and p = 4 (HGQW-A model).

The data for both the AQA and the QAOA is obtained in the same manner as for the
heuristic models in sections 2.4.1 and 2.4.2 by performing 200 optimization runs for each
problem instance and each p, with randomly initialized parameter sets and a maximum of
4000 evaluations using the Nelder-Mead algorithm [110]. Note that the best (highest Pgs)
optimization run is selected and averaged over the sample groups N and that the D-Wave
annealing scheme [80] is used for the AQA as proposed by Willsch et al. [30]. The complete
data set can be found in appendix J.2 and appendix J.3.

2.4.3.1. Performance on exact cover problems

The scaling of the success probabilities obtained by the three algorithm as a function of the
circuit depth p (and thus the number of variational parameters) on the set of exact cover
problems (see appendix G) is presented in the Fig. 2.13. Here, Fig. 2.13a (Fig. 2.13b) con-
siders problem instances of N = 12 (N = 16) qubits. Beginning with the AQA (red curve),
a monotonic increase of Pgs(p) across the investigated problem instance is found. Here, the
success probability approximately occupies the shape of a stretched sigmoid distribution,
featuring an increasing first derivative for p < 24 (p < 48) and an approaching saturation
for p ≥ 28 (p ≥ 56) and N = 12 (N = 16). Interestingly, the position of the turning point pt

(i.e. Pgs(pt) = 0.5) increases as a function of N . By comparing the distribution of pt across
the simulated system sizes (N = {10, 12, 14, 16, 18} → pt = {24, 28, 40, 56, 72}) an ap-
proximately exponential scaling is found, suggesting that the AQA requires exponentially
increasing circuit depths p in order to achieve similar success probabilities for growing prob-
lem size N . A possible explanation for this observation can be found in the structure of
the energy spectra of the generated exact cover instances. As mentioned before, these prob-
lems feature numerous distinct energy levels, with quantities that increase approximately
exponentially in the number of qubits N (see section 2.1.1). After rescaling each problem
Hamiltonian to the same energy range, the smallest energy gab between the ground and
the first excited state in a quantum annealing process generally decreases in N . Since, the
AQA resembles trotterized QA for large p, and p is proportional to the annealing time τ ,
pt must increase according to the adiabatic theorem (see Eq. 2.22). This could also explain
the significantly larger standard deviations obtained for the AQA compared to the GQW
(see e.g. Fig. 2.13b), as the performance of the AQA strongly depends on the size of the
energy gaps, which vary across the investigated problem instances. Regarding the guided
quantum walk, on the other hand, the standard deviations are within 5% and independent
of the number of iterations p. This is because the GQW does not depend on the sizes of
the energy gaps, but rather on their distribution, such that sufficient phase gradients can be
established during the algorithm. Therefore, the GQW seems to be less dependent on the

86

2.4. Performance analysis

(a) N = 12 qubits

(b) N = 16 qubits

Figure 2.13.: The plots show the best success probabilities obtained by the GQW (blue
points), the AQA (red triangles) and the QAOA (green squares) for the sets of
N = 12 and N = 16 qubit exact cover problems (see appendix G) as a function
of the number of iterations p. The data is averaged within the sample groups,
with the standard deviations included in the plots. The hybrid GQW and the
hybrid AQA curves represent the probability distributions obtained by initializ-
ing the QAOA with variational parameter sets derived by the GQW (dark blue
curve) and the AQA (dark red curve), respectively. Note that the Nelder-Mead
optimizer with 200 runs and a maximum of 4000 evaluations was used.

87

2. Quantum optimization algorithms

specific problem instance than the AQA, as long as the energy spectrum provides enough
guidance. However, note that due to the small number (8) of simulated exact cover problems
per system size N , additional research is needed to verify these assumptions. Besides that,
across all problem instances, the AQA is not able to achieve higher success probabilities
than the GQW for p ≤ 80. Although Pgs = 1 is guaranteed by the adiabatic theorem for
p → ∞ using the AQA, concerning the regime of intermediate p = O(N), the guided quan-
tum walk delivers superior success probabilities. In addition to that, the probability ratio
rGQW

AQA = P
GQW
gs (p = N) / PAQA

gs (p = N) seems to monotonically increase in N , indicating that
the GQW will also outperform the AQA on real world problem instances with N ≫ 1.

Continuing with the QAOA, which represents the third and most general optimization
ansatz, where the 2p variational parameters are tuned individually, this observation is fur-
ther supported. For p ∈ [0,6] the QAOA achieves success probabilities larger than the AQA
but below the guided quantum walk. Interestingly, even for p = 2, where the QAOA searches
a smaller parameter space than the GQW, this observation holds true, suggesting that the
proposed heuristic functions β (i,λ) and γ (i,λ), are able to significantly reduce the com-
plexity of the parameter search (i.e. increase its convexity), hence allowing the classical
optimizer to find good sets of variational parameter more easily. In addition to that, as
the parameter search space grows exponentially in p for the QAOA, the probability ratio
rGQW

QAOA = P
GQW
gs /PQAOA

gs monotonically increases as a function of p. Since the success prob-
ability decreases approximately exponentially, the AQA is able to surpass the QAOA at
p = 8. This observation can be explained by the fixed maximal number of circuit evalua-
tions, limiting the classical optimizer in locating sufficient local optima as the search space
becomes more complex. Concerning the GQW and the AQA, on the other hand, the param-
eter search space has a constant dimensionality, such that the process of parameter tuning
is not negatively effected by an increase of p.

Next, the scaling of Pgs as a function of N is shown in the Fig. 2.14a and Fig. 2.14b, with the
former (p = 10) corresponding to a sample within the first region of operation (p ≤ N), and
the latter (p = 20) showing the scaling within the second region of operation (p ≥ N). In order
to compare the scaling of the three algorithms, exponential fits using P (N) = a ⋅2−bN are also
included in the plots (see solid curves). Regarding these fits, the QAOA achieves the poorest
scaling out of the three algorithms, with a scaling of Pgs that matches random guessing (2−N)
for p = 20. This can be understood by the growing complexity of the search space, such that
the classical optimizer generally uses all 4000 circuit evaluations. Interestingly, slightly bet-
ter success probabilities are obtained at N = 16 and N = 20 for p = 10 than expected for the
2−N scaling, indicating that p = 10 might be near the maximum number of iterations, where
the QAOA can deliver sufficient success probabilities given 4000 evaluations. Consequently,
this also demonstrates the efficient use of computational resources by both the GQW and
the AQA, which deliver significantly better scalings with b ≤ 0.56. Interestingly, both algo-
rithms improve in their scalings with increasing p, due to the decreasing slopes of Pgs(p)
within the second regions of operation. Note that since the turning point for AQA shifts
exponentially towards larger p, a curvature in the distribution of the success probabilities
emerges (see e.g. Fig. 2.14b). Concerning the guided quantum walk, even within the first
region of operation a significantly better scaling (b = 0.13) is found compared to both the
AQA and the QAOA (b ≥ 0.45), while in the second region of operation the scaling becomes
approximately linear (b = 0.06). This verifies the aforementioned observations that rGQW

AQA and
rGQW

QAOA increase in N , yielding superior success probabilities of the GQW for p ∈ [N,2N] on
the set of exact cover problems.

88

2.4. Performance analysis

(a) p = 10 iterations

(b) p = 20 iterations

Figure 2.14.: The plots show the best success probabilities obtained by the GQW (blue
points), the AQA (red triangles) and the QAOA (green squares) for p = 10
and p = 20 iterations as a function of the number of qubits N on the set
of exact cover problems (see appendix G). The data is averaged within the
sample groups, with the standard deviations included in the plots. The hybrid
GQW and the hybrid AQA represent the probability distributions obtained by
initializing the QAOA with variational parameter sets derived by the GQW
(dark blue points) and the AQA (dark red triangles), respectively. Note that
the Nelder-Mead optimizer with 200 runs and a maximum of 4000 evaluations
is used. Moreover, the solid curves denote exponential fits using a2−bN .

89

2. Quantum optimization algorithms

2.4.3.2. Performance on 2-SAT problems

Continuing with the set of 2-SAT problems (see appendix H), the scaling of the success
probabilities as a function of the circuit depth p is presented in Fig. 2.15a (N = 12) and
Fig. 2.15b (N = 16) for the three algorithms. The plots reveal similar distributions of Pgs

in case of the GQW as seen in Fig. 2.13. As discussed in section 2.4.2, the size of the first
region of operation is approximately scaled by a factor of two due to the reduced number of
directed connections in the graph. In contrast to this, both the AQA and the QAOA show
a completely different scaling behaviour compared to section 2.4.3.1.

Regarding the AQA, a constant distribution is obtained for both system sizes of N = 12 and
N = 16 qubits, with success probabilities of Pgs = 4% and Pgs = 0.6%, respectively. Although
the investigated 2-SAT instances were designed to be hard to solve on quantum annealing
devices, the lack of a continues increase of Pgs as seen for the exact cover problems remains an
open question. Since the adiabatic theorem assures unit success for p →∞, the AQA might
require significantly more iterations, in order to increase the annealing time τ and decrease
trotterization errors, such that the system can remain in its ground state. Concerning the
QAOA ansatz, a significant improvement of the success probability is found compared to its
application on the set of exact cover problems (see Fig. 2.13). For p ∈ [0,12], Pgs increases
monotonically, reaching peak success probabilities of Pgs(14) ≈ 0.52 and Pgs(14) ≈ 0.36 at
p ≈ 14 for N = 12 and N = 16, respectively. For p ≥ 14, however, the success probabilities
start to decrease exponentially, driven by the increasing size of the parameter search space,
until they reach saturation probabilities at p ≥ 66 of Pgs(80) ≈ 1% and Pgs(80) ≈ 0.1%,
respectively. In doing so, the QAOA is able to achieve higher success probabilities between
p = 0 and p = 14 than both the guided quantum walk and the AQA. This observation suggests,
that the parameter search space is significantly easier to sample for this problem type than for
the exact cover instances. A possible explanation could be that due to the high degeneracies of
the energy levels and the resulting small number of unique energy gradients between the basis
states, the system is less sensitive to large jumps in the variational parameter distributions,
which is something that typically occurs when initializing β and γ randomly. On the other
hand, the exact cover instances feature numerous distinct energy gaps which also tend to
be ordered in size (see e.g. Fig. 2.7). As a consequence, the variational parameters have
to be chosen much more carefully, in order to tackle the correct exchanges and prevent
counteracting effects. However, additional research is required.

Finally, Fig. 2.16a and Fig. 2.16b depict the scaling of Pgs as a function of the system size at
p = 20 (first region of operation) and p = 40 (second region of operation), respectively. Since
the distribution of the AQA shows large fluctuations, no exponential fitting is included for
it. Compared to section 2.4.3.1 both the scaling of the GQW and the QAOA are significantly
improved, with b ≤ 0.36 and b ≤ 0.08, respectively. As to be expected, the scaling of the QAOA
worsens with increasing p, due to the growing search space, such that for large p a similar
scaling as seen for the exact cover problems (i.e. Pgs(N) ∝ 2−N) is to be expected. Regarding
the GQW, an almost constant scaling is found for the investigated problem sizes up to 20
qubits. This supports the approach of using an alternating sequence between the regular
and inverse spectrum to increase the dynamics of the quantum walker. Thus, the guided
quantum walk, is able to deliver superior success probabilities compared to both the QAOA
and the AQA given a fixed number of circuit evaluations on the set of 2-SAT problems.

90

2.4. Performance analysis

(a) N = 12 qubits

(b) N = 16 qubits

Figure 2.15.: The plots show the best success probabilities obtained by the GQW (blue
points), the AQA (red triangles) and the QAOA (green squares) for the sets of
N = 12 and N = 16 qubit 2-SAT problems (see appendix H) as a function of the
number of iterations p. The data is averaged within the sample groups, with
the standard deviations included in the plots. The hybrid GQW and the hybrid
AQA curves represent the probability distributions obtained by initializing the
QAOA with variational parameter sets derived by the GQW (dark blue curve)
and the AQA (dark red curve), respectively. Note that the Nelder-Mead opti-
mizer with 200 runs and a maximum of 4000 evaluations was used.

91

2. Quantum optimization algorithms

(a) p = 20 iterations

(b) p = 40 iterations

Figure 2.16.: The plots show the best success probabilities obtained by the GQW (blue
points), the AQA (red triangles) and the QAOA (green squares) for p = 10 and
p = 20 iterations as a function of the number of qubits N on the set of 2-SAT
problems (see appendix H). The data is averaged within the sample groups,
with the standard deviations included in the plots. The hybrid GQW and the
hybrid AQA represent the probability distributions obtained by initializing the
QAOA with variational parameter sets derived by the GQW (dark blue points)
and the AQA (dark red triangles), respectively. Note that the Nelder-Mead op-
timizer with 200 runs and a maximum of 4000 evaluations is used. Moreover,
the solid curves denote exponential fits using a2−bN .

92

2.4. Performance analysis

2.4.4. Hybrid algorithms
With the comparison of the success probabilities between the guided quantum walk, the AQA
and the standard QAOA, section 2.4.3 demonstrated that the GQW can achieve superior
success probabilities in the regime of intermediate circuit depths (p = O(N)) compared to
other common quantum optimization algorithms. By analysing the distribution of Pgs as
a function of p, the GQW revealed two regimes of operation, with a great increase of Pgs

within the first N iterations, due to the exponential increase in the number of accessible
states, and a saturation of the success probability below one for p ≥ N . In order to improve
the performance of the heuristic models in especially the second region, a hybrid algorithm
will be investigated in this section, utilizing the strong connection between the GQW and
the QAOA. The algorithm is structured in two stages: First, a guided quantum walk is
performed on the system, yielding a set of already good variational parameters. However, since
approximations are considered in the derivation of the heuristic sampling functions β (i,λ)
and γ (i,λ), in order to keep the parameter search space feasible, small adjustments to the
individual values might significantly improve Pgs. Thus, as a second step, the parameter set
proposed by the GQW is used to initialize the QAOA. In other words, the GQW is used to
determine the general distributions of the variational parameters, which are then fine-tuned
individually via the QAOA. The hope is that with this pre-tuned parameter set, the QAOA
should already start in the neighbourhood of a good local optimum, hence significantly
reducing the number of evaluations required by the classical optimizer. This strategy is
motivated by the fact that the QAOA alone struggles to find good parameter sets for p ≥ 20
for both exact cover and 2-SAT problems, due to the high complexity of the search space,
when initialized randomly (see sections 2.4.3.1 and 2.4.3.2).

This hybrid ansatz is applied to the aforementioned problem instances using the previously
derived parameter sets and is shown alongside the original success probabilities in Fig. 2.13
to Fig. 2.16 (dark blue dashed curves). For comparison, an analogue hybrid strategy using
the variational parameters obtained by the AQA as initial values (dark red dashed curves) is
also shown. Considering the hybrid GQW approach, the obtained mean success probabilities
as a function of p approximately follow a rescaled distribution of Pgs as found for the original
GQW on both the sets of exact cover and 2-SAT problems (see Fig. 2.13 and Fig. 2.15). Con-
sequently, the hybrid strategy features again two regions of operation, with a great increase
of Pgs for p ≤ N (p ≤ 2N) and a saturation for p > N (p > 2N) on the exact cover (2-SAT)
problems. This suggests, that the fine-tuned sets of variational parameters are still located
in the subspace of the guided quantum walk, verifying the discussions in section 2.3.2 on
restricting the movement of the quantum walker. With respect to Fig. 2.18 and Fig. 2.19 this
assumption is confirmed in the case of N = 16 and p = 40, as fine-tuned parameters (dark
blue points) are located close to the initial parameters sets (blue points), hence following a
similar distribution on average. In doing so, pgs ≥ 0.9 is achieved within the second regions,
reaching almost unit success probability for p = 80. This is especially interesting in the case
of the N = 12 qubit 2-SAT problems, where the GQW saturates at Pgs ≈ 0.9, indicating the
limited complexity of the heuristic sampling functions. With respect to the computational
complexity (i.e. number of circit evaluations), this supports the hybrid ansatz of combining
the GQW (providing simplified initial parameter distributions) and the QAOA (increasing
the complexity of the parameter distributions). In doing so, the final success probabilities
seem to be less dependent on the system size N , yielding an approximately constant scaling
within the second region as a function of N (see Fig. 2.14 and Fig. 2.16). Moreover, the stan-
dard deviations within the sample groups are similar to the ones obtained for the original
GQW, suggesting only a weak dependency on the individual problem instances.

93

2. Quantum optimization algorithms

Concerning the hybrid AQA ansatz, significant differences in the scaling behaviour of the
success probability on both exact cover and 2-SAT problems compared to the original AQA
ansatz are found. Regarding exact cover problems, the hybrid AQA strategy now achieves
a similar distribution of Pgs(p) as the hybrid GQW, shifted right by approximately ∆p =
4. Hence, a strong increase in the success probability is obtained for p ∈ [0,22], yielding
Pgs ≥ 0.9 for p ≥ 22. This change in the distribution of Pgs compared to the original AQA
suggests that the fine-tuned parameter set does not necessarily correspond to a trotterized
annealing scheme any more. This assumption is supported by Fig. 2.18 and Fig. 2.19 in the
case of N = 16 and p = 40, as the final variational parameters lie far away from their initial
values. Regarding the 2-SAT problems, the success probabilities obtained by the hybrid
AQA strategy lie significantly below the ones of the hybrid GQW ansatz. Here, Pgs increases
for p < 10 (p < 28) until it saturates at ≈ 15% (fluctuates between ≈ 8% and ≈ 18%) on the
N = 12 (N = 16) qubit problems. This can be understood by the aforementioned observation
that the AQA struggles to find good parameter sets, such that the initial position of the
QAOA in the parameter search space supposedly has a great distance to any sufficient local
optimum. This also explains the large standard deviations seen in Fig. 2.15b, since the
classical optimizer (executed only once) has to move a long distance in the highly complex
search space.

Comparing both hybrid approaches, the hybrid GQW ansatz seems to provide superior suc-
cess probabilities when solving 2-SAT problems compared to the hybrid AQA approach. Re-
garding exact cover problems, on the other hand, both hybrid strategies achieve similar
success probabilities for p ≥ 2N , making the hybrid AQA strategy a competitive approach
at intermediate p. However, while performing the simulations, it was found that the hybrid
ansatz initialized via the AQA required significantly more evaluations by the classical opti-
mizer than the one using the GQW parameter sets. As this is caused by differences in the
distances between the initial and final parameter sets in the search space, Fig 2.17 depicts
the distance metric dβ,γ [106] defined as:

dβ,γ =
p−1
∑
i=0
[∣βinit

i − βopt
i ∣π

2
+ ∣γinit

i − γopt
i ∣] . (2.75)

Here, ∣. . .∣π
2

denotes the absolute value modulo π/2 which takes into account symmetries, and
init and opt label the initial and optimized parameter sets obtained by the GQW (AQA) and
the hybrid GQW (AQA) ansatz, respectively. In doing so, Fig 2.17 reveals an approximately
linear increase of dβ,γ as a function of p in the context of the hybrid AQA. In contrast to
this, dβ,γ stays approximately constant at 5 in case of the hybrid GQW. Interestingly, no
significant differences are found between the investigated system sizes N . As a result, the
computational work needed for the second stage of the hybrid AQA ansatz increases in p
and consequently in N , as more iterations p are typically required for increased system sizes
N . However, regarding the hybrid guided quantum walk, the computational work of the
second stage seems to be constant, which, in combination with the proposed linear scaling of
p in N , suggests that the guided quantum walk could be able to reach unit success probability
using only computational resources that scale linearly in the number of qubits N .

94

2.4. Performance analysis

Figure 2.17.: The figure shows the parameter distances dβ,γ (see Eq. 2.75) as a function of
the number of iterations p between the initial and final parameter sets of the
hybrid GQW (blue curve) and hybrid AQA (red curve) strategies. The data
is averaged within the sample groups and shown for the N = 12 (blue and red
curves) qubit and N = 16 (dark blue and dark red curves) qubit problems. The
initial parameter sets are determined using 200 optimization runs with a max-
imum of 4000 evaluations of the Nelder-Mead routine. The subsequent QAOA
optimization was limited to 4000 evaluations.

95

2. Quantum optimization algorithms

(a) Spread coeffients β

(b) Phase coeffients γ

Figure 2.18.: The plots show the initial (blue and red points) and fine-tuned (dark blue and
dark red points) sets of the spread coefficients β (a) and phase coefficients γ (b)
determined by the hybrid GQW (blue) and the hybrid AQA (red) strategies
for the EC_16_1 exact cover problem. The initial parameter sets are deter-
mined using 200 optimization runs with a maximum of 4000 evaluations of the
Nelder-Mead routine. The subsequent QAOA optimization was limited to 4000
evaluations.

96

2.4. Performance analysis

(a) Spread coeffients β

(b) Phase coeffients γ

Figure 2.19.: The plots show the initial (blue and red points) and fine-tuned (dark blue and
dark red points) sets of the spread coefficients β (a) and phase coefficients γ (b)
determined by the hybrid GQW (blue) and the hybrid AQA (red) strategies for
the 2SAT_16_1 2-SAT problem. The initial parameter sets are determined using
200 optimization runs with a maximum of 4000 evaluations of the Nelder-Mead
routine. The subsequent QAOA optimization was limited to 4000 evaluations.

97

Conclusion

SEQCS The first chapter of this thesis concerned the high-performance simulation of large
scale quantum systems (N ≥ 30). Motivated by the high parallelism involved in the com-
putation of general quantum gates, SEQCS, a novel quantum circuit simulator utilizing
GPU-accelerators spread across multiple compute nodes, has been developed. In its imple-
mentation, novel optimization strategies regarding the memory management, memory access
patterns and the load balance have been proposed in order to increase the overall utilization
of the GPU running the memory bound code.

The first area of improvement concerned the distribution of a state vector across multiple
GPUs, allowing SEQCS to simulate quantum circuits of more than 30 qubits. Here, each
GPU operates on an exclusive subset of the state space, separating the qubits into local
(located at a single GPU) and global (distributed among two GPUs) qubits. Since, pairs of
GPUs must exchange half of their memory each time a non-diagonal gate is executed on a
global qubit, SEQCS proposes a reordering algorithm in order to alter the execution sequence
of the gate operations in the circuit. This was motivated by the observation that combining
multiple qubit exchanges into a single MPI transfer significantly reduces the amount of bytes
communicated through the internode network. Moreover, SEQCS introduces a permutation
operator to track the locations of the qubits among the GPUs, allowing it to skip the back
transfer of the state amplitudes after the execution of a global gate operation by swapping
the memory locations of a global and a local qubit. In doing so, SEQCS achieved an up to
2.5 times faster MPI communication than JUQCS-G on the 36 qubit Hadamard benchmark
circuit.

The second area of improvement focussed on the caching of the state amplitudes during
the execution of local quantum gates. Here, SEQCS introduces the shared memory into the
simulation process in order to reduce the number of global memory transactions. This was
motivated by the fact that accesses to the shared memory can be executed up to 100 times
faster than request to the global memory. Hence, SEQCS proposes a second preprocessing
algorithm to rearrange the gate operations into gate clusters. Each gate cluster operates
on an 11 qubit subspace of the local state vector, such that it can be simulated in parallel
among the streaming multiprocessors. In doing so, each update routine is executed on local
copies of the state amplitudes in the shared memory, thus significantly increasing the memory
access speeds and the computational intensity. As a result, an ideal strong scaling of the gate
execution time in the gate cluster size for up to 8 clustered gates is found, with a maximum
speed-up of 12.7 for 128 clustered Hadamard gates.

The third area of improvement dealt with the combined execution of multiple gate opera-
tions. Here, SEQCS proposes a preprocessing algorithm to group quantum gates acting on
disjoint qubit sets into a single update routine. By grouping only gates of the same type,

98

SEQCS is able to accumulate the effects of the individual gate matrices, such that each state
amplitude must be accessed only once during the execution of a gate group. In doing so, the
computational intensity of the simulation is further increased, yielding a close-to ideal strong
scaling of the gate execution time in the number of grouped single qubit diagonal gates. For
example, SEQCS can simulate the Z gate up to 329 times faster than JUQCS-G. Note that
the speed-ups depend on the amount of arithmetic operations involved in the update kernels,
indicating that the simulation is no longer memory-bound. This demonstrates the success of
the proposed optimizations to the memory management. Regarding non-diagonal gates, the
gate group size is limited to two gates, yielding an up to 17 times faster execution of the
Hadamard gate compared to JUQCS-G. This restriction is due to the small number of reg-
isters available to each CUDA thread. Besides that, SEQCS uses an out-of-order execution
scheme for this gate type in order to prevent shared memory bank conflicts and increase the
load balance within the CUDA warps. It was shown that this execution scheme reduces the
execution time by 17% compared to an in-order gate execution.

As a result of these optimizations, SEQCS is able to simulate the 31 qubit quantum Fourier
transformation 22.6 times faster and the 31 qubit QAOA circuit (p = 50) 70.4 times faster
than JUQCS-G. Hence, SEQCS provides a valuable tool for investigating and simulating
large-scale quantum circuits on classical hardware. Potential further improvements to the
simulator include the following aspects:

• During the distributed simulation of the Hadamard benchmark circuit, it was found
that the implementation of a single qubit exchange between two GPUs is approximately
10 times slower than the implementation used in JUQCS-G. This is most likely caused
by the extensive use of unoptimized MPI data structures (e.g. MPI_Type_vector and
MPI_Type_indexed) and an insufficient buffer management by MPI, potentially caus-
ing expensive Device-Host memory transfers. Hence, an improved implementation of
the GPU-GPU communication is required in order to fully utilize the speed-up pro-
vided by the combined qubit exchanges.

• Different communication frameworks, such as NCCL [59] and NVSHMEM [60] could
further reduce the GPU-GPU communication time.

• The investigation of the various benchmark circuits showed that the update kernel
used for combined gate executions introduces additional overhead into the simulation
process. This becomes especially important in the case of arbitrary rotation gates that
require frequent accesses to the constant memory. Hence, accelerating the algorithm
used to map the state amplitudes to the CUDA threads and storing frequently used
data in the registers, could increase the simulation speed.

• Regarding certain quantum algorithms (e.g. the QAOA and Shor’s integer factoriza-
tion), the simulation speed could be significantly increased by designing specialized
update routines that replace large sections of the respective quantum circuits. This
strategy is called quantum circuit emulation.

• In order to allow the investigation of quantum algorithms running on NISQ devices,
the simulator could be extended to include error sources during the application of
quantum gates and qubit measurements.

99

Conclusion

Guided quantum walk The second chapter of this thesis concerned the investigation of
quantum optimization algorithms. Inspired by the operation of continuous quantum walks
and the QAOA, the guided quantum walk, a novel hybrid quantum-classical variational
algorithm for deriving approximate solutions to combinatorial optimization problems, has
been developed. The algorithm deploys a quantum walker on an oriented graph connect-
ing the problem’s solution space in order to direct a probability flow towards the solution
state. Considering a hypercube mapping between the computational basis states, the GQW
uses a set of spread coefficients to select specific interaction orders between the computa-
tional basis states based on their Hamming distance. Here, the GQW restricts the walker’s
movement to nearest neighbour interactions only in order to accumulate probability in low
energy states. In addition to this, the direction of probability transfer is determined by a set
of phase coefficients, controlling the complex phase gradients between connected basis states
in the graph.

Based on the above concepts, the HGQW model for executing guided quantum walks on
exact cover problems has been introduced. This model is inspired by the immense split-
ting of the energy levels found across all investigated exact cover instances, allowing to
sufficiently distinguish neighbouring states in the graph based on their energy. Hence, two
heuristic sampling functions focussing on the distribution of the energy gradients in the
problem Hamiltonian have been proposed, yielding a constant and an exponential distribu-
tion of the spread and phase coefficients, respectively. In doing so, the HGQW model tunes
a fixed set of optimization parameters, which are used to adjust the shape of the sampling
functions to each specific problem instance, instead of optimizing each variational parameter
separately. This strategy was motivated by the observation of common patterns in optimized
parameter sets and reduces the exponential in the number of parameters growing complexity
of the optimization process to a constant factor. By applying the HGQW model to an exact
cover instance, it was shown that the GQW is able to introduce anharmonicity into the oth-
erwise harmonic oscillation of the success probability obtained by a conventional quantum
walk. As such, the GQW can be understood as a continuous quantum walk that is actively
pushed in the direction of the solution state, hence iteratively concentrating probability in
states of low energy. However, regarding 2-SAT problems, it was demonstrated that the
probability flow can be restricted by internal barriers caused by insufficient energy gradients
between neighbouring states, due to the high degeneracy of the energy levels. To conquer
this problem, an adjusted heuristic model, termed HGQW-A, was developed. It proposes a
mixing operation that alternates the state amplitudes between the regular and the inverse
graph layout, in order to introduce artificial phase gradients and thus lift the degeneracy. In
doing so, similar dynamics to the HGQW model were achieved.

The final investigation of the models’ performances on sets of exact cover and 2-SAT prob-
lems revealed two regions of operation, with a great initial increase of Pgs for p ≤ aN (a = 1
for HGQW and a = 2 for HGQW-A) resulting in intermediate success probabilities (Pgs ≥ 0.5)
after already a few iterations (i.e. p = aN/2). For p > aN , where the algorithms are no longer
limited by the accessibility of the basis states, the success probability was found to saturate
between 80% and 94%. Important to mention here is that the HGQW-A model requires
approximately twice as many iterations as the HGQW model to reach similar success prob-
abilities, since the quantum walker can only be guided within the regular graph. Comparing
the performance of the two models to the AQA and the QAOA, the experiments showed that
the GQW delivers superior success probabilities in the region of low to intermediate p. Here,
the GQW seems to be most efficient for p ∈ [aN, 2aN], hence requiring computational re-
sources that scale only linearly in N . Moreover, with Pgs(N) ∝ 2−0.13N (Pgs(N) ∝ 2−0.08N) in

100

the first region and Pgs(N) ∝ 2−0.06N (Pgs(N) ∝ 2−0.01N) in the second region on exact cover
(2-SAT) problems, significantly better scaling behaviours of the success probability in the
number of qubits are found. This observation suggests that instances of the GQW are able
to outperform the QAOA and the AQA also on real world optimization problems featuring
numerous qubits. In addition to this, a hybrid approach of combining the GQW with the
QAOA achieved Pgs ≥ 95% at p = 2aN , suggesting that the GQW can also be used as a pre
optimization stage within other optimization algorithms in order to simplify the process of
parameter tuning.

The two heuristic model studied in this thesis can be understood as a first demonstration of
the guided quantum walk as a competitive strategy to other common quantum optimization
algorithms, delivering high success probabilities in the region of intermediate computational
resources. Especially its property of an optimization phase of constant complexity, a steep
increase of the success probability for intermediate circuit depths and an accumulation of
probability at low energies in the graph make it a promising candidate for near term NISQ
devices. In order to develop the GQW into a general optimization algorithm, addition re-
search has to focus on the following aspects:

• The mixing operation was introduced in the HGQW-A model to partially lift the
degeneracy of the energy levels by transforming the system between the regular and the
inverse graph layout. It is left to find a heuristic sequence for applying these operations,
for example governed by a set of optimization parameters. This would allow combining
the HGQW model and the HGQW-A model into a single strategy, as well as reliably
solving other types of combinatorial optimization problems.

• The strong fluctuations of the spread coefficients in the inverse graph within the first
region of operation for the HGQW-A model indicate that the sampling function of
the phase coefficients in the inverse graph is not optimal. Hence, improvements to this
function (potentially including additional optimization parameters) could be investi-
gated.

• The distribution of the spread coefficients for both the HGQW model and the HGQW-
A model showed no significant dependence on the problem size or the energy spec-
trum. This suggests that the corresponding optimization parameter could be replaced
by a predetermined distribution.

• With respect to the hybrid GQW ansatz, the guided quantum walk could be reformu-
lated as an iterative process, where every iteration increases the complexity (number of
optimization parameters) of the optimization process. In doing so, it could be possible
to reach almost unit success probability within reasonable circuit depths.

101

Bibliography

[1] Richard P. Feynman. “Simulating physics with computers”. In: International Journal
of Theoretical Physics 21.6-7 (1982), pp. 467–488. issn: 1572-9575. doi: 10.1007/BF0
2650179. url: https://link.springer.com/article/10.1007/BF02650179.

[2] Frank Arute et al. “Quantum supremacy using a programmable superconducting
processor”. In: Nature 574.7779 (2019), pp. 505–510. issn: 1476-4687. doi: 10.1038
/s41586-019-1666-5. url: https://www.nature.com/articles/s41586-019-166
6-5.

[3] Davide Castelvecchi. “Quantum computers ready to leap out of the lab in 2017”.
In: Nature 541.7635 (2017), pp. 9–10. issn: 1476-4687. doi: 10.1038/541009a. url:
https://www.nature.com/articles/541009a.

[4] Nathalie P. de Leon et al. “Materials challenges and opportunities for quantum
computing hardware”. In: Science 372.6539 (2021). issn: 1095-9203. doi: 10.1126
/science.abb2823.

[5] S. Marsh and J. B. Wang. “A quantum walk-assisted approximate algorithm for
bounded NP optimisation problems”. In: Quantum Information Processing 18.3 (2019).
issn: 1573-1332. doi: 10.1007/s11128-019-2171-3. url: https://arxiv.org/
pdf/1804.08227.

[6] Lov K. Grover. A fast quantum mechanical algorithm for database search. 1996. url:
https://arxiv.org/pdf/quant-ph/9605043.

[7] Peter W. Shor. “Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer”. In: SIAM Review 41.2 (1999), pp. 303–332.
issn: 0036-1445. doi: 10.1137/S0036144598347011.

[8] Carlos D. Gonzalez Calaza, Dennis Willsch, and Kristel Michielsen. “Garden opti-
mization problems for benchmarking quantum annealers”. In: Quantum Information
Processing 20.9 (2021). issn: 1573-1332. doi: 10.1007/s11128-021-03226-6. url:
https://arxiv.org/pdf/2101.10827.

[9] Pontus Vikstål et al. “Applying the Quantum Approximate Optimization Algorithm
to the Tail-Assignment Problem”. In: Physical Review Applied 14.3 (2020). issn: 2331-
7019. doi: 10.1103/PhysRevApplied.14.034009. url: https://arxiv.org/pdf/1
912.10499.

[10] Yudong Cao et al. Quantum Chemistry in the Age of Quantum Computing. 2019. doi:
10.1021/acs.chemrev.8b00803. url: https://arxiv.org/pdf/1812.09976.

[11] Sam McArdle et al. Quantum computational chemistry. 2020. doi: 10.1103/RevMod
Phys.92.015003. url: https://arxiv.org/pdf/1808.10402.

103

https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
https://link.springer.com/article/10.1007/BF02650179
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://www.nature.com/articles/s41586-019-1666-5
https://www.nature.com/articles/s41586-019-1666-5
https://doi.org/10.1038/541009a
https://www.nature.com/articles/541009a
https://doi.org/10.1126/science.abb2823
https://doi.org/10.1126/science.abb2823
https://doi.org/10.1007/s11128-019-2171-3
https://arxiv.org/pdf/1804.08227
https://arxiv.org/pdf/1804.08227
https://arxiv.org/pdf/quant-ph/9605043
https://doi.org/10.1137/S0036144598347011
https://doi.org/10.1007/s11128-021-03226-6
https://arxiv.org/pdf/2101.10827
https://doi.org/10.1103/PhysRevApplied.14.034009
https://arxiv.org/pdf/1912.10499
https://arxiv.org/pdf/1912.10499
https://doi.org/10.1021/acs.chemrev.8b00803
https://arxiv.org/pdf/1812.09976
https://doi.org/10.1103/RevModPhys.92.015003
https://doi.org/10.1103/RevModPhys.92.015003
https://arxiv.org/pdf/1808.10402

Bibliography

[12] Edward Farhi and Hartmut Neven. “Classification with Quantum Neural Networks
on Near Term Processors”. In: MIT-CTP (2018). url: https://arxiv.org/pdf/18
02.06002.

[13] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. Quantum algorithms for su-
pervised and unsupervised machine learning. 2013. url: https://arxiv.org/pdf/1
307.0411.

[14] D. Willsch et al. “Support vector machines on the D-Wave quantum annealer”. In:
Computer Physics Communications 248 (2020), p. 107006. issn: 0010-4655. doi: 10
.1016/j.cpc.2019.107006. url: https://arxiv.org/pdf/1906.06283.

[15] S. Pirandola et al. “Advances in quantum cryptography”. In: Advances in Optics and
Photonics 12.4 (2020), p. 1012. doi: 10.1364/AOP.361502. url: https://arxiv.
org/pdf/1906.01645.

[16] Simon J. Devitt, William J. Munro, and Kae Nemoto. “Quantum error correction for
beginners”. In: Reports on Progress in Physics 76.7 (2013), p. 076001. issn: 1361-6633.
doi: 10.1088/0034-4885/76/7/076001. url: https://arxiv.org/pdf/0905.2794.

[17] Suguru Endo et al. “Hybrid Quantum-Classical Algorithms and Quantum Error Mit-
igation”. In: Journal of the Physical Society of Japan 90.3 (2021), p. 032001. issn:
1347-4073. doi: 10.7566/JPSJ.90.032001. url: https://arxiv.org/pdf/2011.01
382.

[18] Dennis Willsch et al. “Hybrid Quantum Classical Simulations”. In: NIC Symposium
2022 (2022). url: https://arxiv.org/pdf/2210.02811.

[19] Sergey Bravyi, Graeme Smith, and John A. Smolin. “Trading Classical and Quantum
Computational Resources”. In: Physical Review X 6.2 (2016). issn: 2160-3308. doi:
10.1103/PhysRevX.6.021043. url: https://arxiv.org/pdf/1506.01396.

[20] Nikolaj Moll et al. “Quantum optimization using variational algorithms on near-term
quantum devices”. In: Quantum Science and Technology 3.3 (2018), p. 030503. issn:
2058-9565. doi: 10.1088/2058-9565/aab822. url: https://arxiv.org/pdf/1710
.01022.

[21] Benjamin Villalonga et al. “Establishing the quantum supremacy frontier with a 281
Pflop/s simulation”. In: Quantum Science and Technology 5.3 (2020), p. 034003. issn:
2058-9565. doi: 10.1088/2058-9565/ab7eeb. url: https://arxiv.org/pdf/1905
.00444.

[22] Sergio Boixo et al. “Characterizing quantum supremacy in near-term devices”. In:
Nature Physics 14.6 (2018), pp. 595–600. issn: 1745-2473. doi: 10.1038/s41567-01
8-0124-x. url: https://arxiv.org/pdf/1608.00263.

[23] Eladio Gutiérrez et al. “Quantum computer simulation using the CUDA programming
model”. In: Computer Physics Communications 181.2 (2010), pp. 283–300. issn: 0010-
4655. doi: 10.1016/j.cpc.2009.09.021.

[24] Thomas Häner and Damian S. Steiger. “0.5 petabyte simulation of a 45-qubit quan-
tum circuit”. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. SC (2017), pp. 1–10. doi: 10.1145/3
126908.3126947. url: https://arxiv.org/pdf/1704.01127.

[25] Tyson Jones et al. “QuEST and High Performance Simulation of Quantum Comput-
ers”. In: Scientific Reports 9.1 (2019), p. 10736. issn: 2045-2322. doi: 10.1038/s415
98-019-47174-9. url: https://arxiv.org/pdf/1802.08032.

104

https://arxiv.org/pdf/1802.06002
https://arxiv.org/pdf/1802.06002
https://arxiv.org/pdf/1307.0411
https://arxiv.org/pdf/1307.0411
https://doi.org/10.1016/j.cpc.2019.107006
https://doi.org/10.1016/j.cpc.2019.107006
https://arxiv.org/pdf/1906.06283
https://doi.org/10.1364/AOP.361502
https://arxiv.org/pdf/1906.01645
https://arxiv.org/pdf/1906.01645
https://doi.org/10.1088/0034-4885/76/7/076001
https://arxiv.org/pdf/0905.2794
https://doi.org/10.7566/JPSJ.90.032001
https://arxiv.org/pdf/2011.01382
https://arxiv.org/pdf/2011.01382
https://arxiv.org/pdf/2210.02811
https://doi.org/10.1103/PhysRevX.6.021043
https://arxiv.org/pdf/1506.01396
https://doi.org/10.1088/2058-9565/aab822
https://arxiv.org/pdf/1710.01022
https://arxiv.org/pdf/1710.01022
https://doi.org/10.1088/2058-9565/ab7eeb
https://arxiv.org/pdf/1905.00444
https://arxiv.org/pdf/1905.00444
https://doi.org/10.1038/s41567-018-0124-x
https://doi.org/10.1038/s41567-018-0124-x
https://arxiv.org/pdf/1608.00263
https://doi.org/10.1016/j.cpc.2009.09.021
https://doi.org/10.1145/3126908.3126947
https://doi.org/10.1145/3126908.3126947
https://arxiv.org/pdf/1704.01127
https://doi.org/10.1038/s41598-019-47174-9
https://doi.org/10.1038/s41598-019-47174-9
https://arxiv.org/pdf/1802.08032

Bibliography

[26] Gang Yu. Industrial Applications of Combinatorial Optimization. Springer New York,
NY, 1998. doi: 10.1007/978-1-4757-2876-7.

[27] Dennis Willsch et al. “Benchmarking Supercomputers with the Jülich Universal Quan-
tum Computer Simulator”. In: NIC Symposium 2020 (2020). url: https://arxiv.
org/pdf/1912.03243.

[28] Dennis Willsch et al. “Benchmarking Advantage and D-Wave 2000Q quantum an-
nealers with exact cover problems”. In: Quantum Information Processing 21.4 (2022).
issn: 1573-1332. doi: 10.1007/s11128-022-03476-y. url: https://arxiv.org/
pdf/2105.02208.

[29] Supercomputing Support. “JUWELS: Modular Tier-0/1 Supercomputer at Jülich Su-
percomputing Centre”. In: Journal of large-scale research facilities JLSRF 5 (2019).
issn: 2364-091X. doi: 10.17815/jlsrf-5-171. url: https://apps.fz-juelich.
de/jsc/hps/juwels/index.html.

[30] Dennis Willsch et al. “GPU-accelerated simulations of quantum annealing and the
quantum approximate optimization algorithm”. In: Computer Physics Communica-
tions 278 (2022), p. 108411. issn: 0010-4655. doi: 10.1016/j.cpc.2022.108411.
url: https://arxiv.org/pdf/2104.03293.

[31] Michael A. Nielsen, Isaac L. Chuang. Quantum Computation and Quantum Informa-
tion. Cambridge University Press, 2000.

[32] D. Deutsch, A. Barenco, and A. Ekert. Universality in quantum computation. 1995.
doi: 10.1098/rspa.1995.0065. url: https://arxiv.org/pdf/quant-ph/9505018.

[33] DiVincenzo. “Two-bit gates are universal for quantum computation”. In: Physical
review. A, Atomic, molecular, and optical physics 51.2 (1995), pp. 1015–1022. issn:
1050-2947. doi: 10.1103/PhysRevA.51.1015. url: https://arxiv.org/pdf/cond-
mat/9407022.

[34] Christopher M. Dawson and Michael A. Nielsen. The Solovay-Kitaev algorithm. 2005.
url: https://arxiv.org/pdf/quant-ph/0505030.

[35] JUNIQ. 2022. url: https://juniq.fz-juelich.de/.
[36] IBM Quantum. 2021. url: https://quantum-computing.ibm.com/.
[37] John Preskill. “Quantum Computing in the NISQ era and beyond”. In: Quantum 2

(2018), p. 79. issn: 2521-327X. doi: 10.22331/q-2018-08-06-79. url: https:
//arxiv.org/pdf/1801.00862.

[38] Hans de Raedt et al. Massively parallel quantum computer simulator, eleven years
later. 2019. doi: 10.1016/j.cpc.2018.11.005. url: https://arxiv.org/pdf/180
5.04708.

[39] Aneeqa Fatima and Igor L. Markov. “Faster Schrödinger-style simulation of quantum
circuits”. In: HPCA (2020). url: https://arxiv.org/pdf/2008.00216.

[40] Sergio Boixo et al. Simulation of low-depth quantum circuits as complex undirected
graphical models. 2017. url: https://arxiv.org/pdf/1712.05384.

[41] Danylo Lykov et al. Tensor Network Quantum Simulator With Step-Dependent Par-
allelization. 2020. url: https://arxiv.org/pdf/2012.02430.

[42] Edwin Pednault et al. Leveraging Secondary Storage to Simulate Deep 54-qubit Sycamore
Circuits. 2019. url: https://arxiv.org/pdf/1910.09534.

105

https://doi.org/10.1007/978-1-4757-2876-7
https://arxiv.org/pdf/1912.03243
https://arxiv.org/pdf/1912.03243
https://doi.org/10.1007/s11128-022-03476-y
https://arxiv.org/pdf/2105.02208
https://arxiv.org/pdf/2105.02208
https://doi.org/10.17815/jlsrf-5-171
https://apps.fz-juelich.de/jsc/hps/juwels/index.html
https://apps.fz-juelich.de/jsc/hps/juwels/index.html
https://doi.org/10.1016/j.cpc.2022.108411
https://arxiv.org/pdf/2104.03293
https://doi.org/10.1098/rspa.1995.0065
https://arxiv.org/pdf/quant-ph/9505018
https://doi.org/10.1103/PhysRevA.51.1015
https://arxiv.org/pdf/cond-mat/9407022
https://arxiv.org/pdf/cond-mat/9407022
https://arxiv.org/pdf/quant-ph/0505030
https://juniq.fz-juelich.de/
https://quantum-computing.ibm.com/
https://doi.org/10.22331/q-2018-08-06-79
https://arxiv.org/pdf/1801.00862
https://arxiv.org/pdf/1801.00862
https://doi.org/10.1016/j.cpc.2018.11.005
https://arxiv.org/pdf/1805.04708
https://arxiv.org/pdf/1805.04708
https://arxiv.org/pdf/2008.00216
https://arxiv.org/pdf/1712.05384
https://arxiv.org/pdf/2012.02430
https://arxiv.org/pdf/1910.09534

Bibliography

[43] Ya-Qian Zhao et al. “Simulation of quantum computing on classical supercomputers
with tensor-network edge cutting”. In: Physical Review A 104.3 (2021). issn: 2469-
9934. doi: 10.1103/PhysRevA.104.032603. url: https://arxiv.org/pdf/2010.1
4962.

[44] John Brennan et al. Tensor Network Circuit Simulation at Exascale. 2021. url: htt
ps://arxiv.org/pdf/2110.09894.

[45] Edwin Pednault et al. Pareto-Efficient Quantum Circuit Simulation Using Tensor
Contraction Deferral. 2017. url: https://arxiv.org/pdf/1710.05867.

[46] Xiao Yuan et al. “Quantum Simulation with Hybrid Tensor Networks”. In: Physical
Review Letters 127.4 (2021), p. 040501. issn: 1079-7114. doi: 10.1103/PhysRevLett.
127.040501. url: https://arxiv.org/pdf/2007.00958.

[47] Alwin Zulehner and Robert Wille. Advanced Simulation of Quantum Computations.
2017. url: https://arxiv.org/pdf/1707.00865.

[48] Zhimin Wang et al. “A quantum circuit simulator and its applications on Sunway
TaihuLight supercomputer”. In: Scientific Reports 11.1 (2021), p. 355. issn: 2045-
2322. doi: 10.1038/s41598-020-79777-y. url: https://arxiv.org/pdf/2008.07
140.

[49] Zhao-Yun Chen et al. “64-qubit quantum circuit simulation”. In: Science Bulletin
63.15 (2018), pp. 964–971. issn: 2095-9273. doi: 10.1016/j.scib.2018.06.007.
url: https://www.sciencedirect.com/science/article/pii/S20959273183028
09.

[50] Cupjin Huang et al. “Efficient parallelization of tensor network contraction for simu-
lating quantum computation”. In: Nature Computational Science 1.9 (2021), pp. 578–
587. issn: 2662-8457. doi: 10.1038/s43588-021-00119-7. url: https://www.
nature.com/articles/s43588-021-00119-7.

[51] Li, Ang and Fang, Bo and Granade, Christopher and Prawiroatmodjo, Guen and
Heim, Bettina and Roetteler, Martin and Krishnamoorthy, Sriram. “SV-Sim: Scalable
PGAS-Based State Vector Simulation of Quantum Circuits”. In: (2021). doi: 10.11
45/3458817.3476169.

[52] Jun Doi et al. “Quantum computing simulator on a heterogenous HPC system”. In:
ACM, 2019. doi: 10.1145/3310273.3323053.

[53] Message Passing Interface. 2022. url: https://www.mpi-forum.org/docs/mpi-4.0
/mpi40-report.pdf.

[54] NVIDIA. “nvidia-ampere-architecture-whitepaper”. In: (). url: https://images.
nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architec
ture-whitepaper.pdf (visited on 10/04/2022).

[55] NVIDIA. Compute Unified Device Architecture (CUDA). url: https://docs.nvidi
a.com/cuda/.

[56] Santiago I. Betelu. The limits of quantum circuit simulation with low precision arith-
metic. 2020. url: https://arxiv.org/pdf/2005.13392.

[57] Xin-Chuan Wu et al. Full-state quantum circuit simulation by using data compression.
2019. doi: 10.1145/3295500.3356155. url: https://arxiv.org/pdf/1911.04034.

[58] K. de Raedt et al. Massively parallel quantum computer simulator. 2007. doi: 10.10
16/j.cpc.2006.08.007. url: https://arxiv.org/pdf/quant-ph/0608239.

106

https://doi.org/10.1103/PhysRevA.104.032603
https://arxiv.org/pdf/2010.14962
https://arxiv.org/pdf/2010.14962
https://arxiv.org/pdf/2110.09894
https://arxiv.org/pdf/2110.09894
https://arxiv.org/pdf/1710.05867
https://doi.org/10.1103/PhysRevLett.127.040501
https://doi.org/10.1103/PhysRevLett.127.040501
https://arxiv.org/pdf/2007.00958
https://arxiv.org/pdf/1707.00865
https://doi.org/10.1038/s41598-020-79777-y
https://arxiv.org/pdf/2008.07140
https://arxiv.org/pdf/2008.07140
https://doi.org/10.1016/j.scib.2018.06.007
https://www.sciencedirect.com/science/article/pii/S2095927318302809
https://www.sciencedirect.com/science/article/pii/S2095927318302809
https://doi.org/10.1038/s43588-021-00119-7
https://www.nature.com/articles/s43588-021-00119-7
https://www.nature.com/articles/s43588-021-00119-7
https://doi.org/10.1145/3458817.3476169
https://doi.org/10.1145/3458817.3476169
https://doi.org/10.1145/3310273.3323053
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://docs.nvidia.com/cuda/
https://docs.nvidia.com/cuda/
https://arxiv.org/pdf/2005.13392
https://doi.org/10.1145/3295500.3356155
https://arxiv.org/pdf/1911.04034
https://doi.org/10.1016/j.cpc.2006.08.007
https://doi.org/10.1016/j.cpc.2006.08.007
https://arxiv.org/pdf/quant-ph/0608239

Bibliography

[59] NVIDIA. NVIDIA Collective Communications Library (NCCL). url: https://doc
s.nvidia.com/deeplearning/nccl/.

[60] NVIDIA. NVSHMEM. url: https://docs.nvidia.com/nvshmem/index.html.
[61] Samuel Williams, Andrew Waterman, and David Patterson. “Roofline”. In: Commu-

nications of the ACM 52.4 (2009), pp. 65–76. issn: 0001-0782. doi: 10.1145/14987
65.1498785.

[62] A. Amariutei and S. Caraiman. “Parallel quantum computer simulation on the GPU”.
In: 15th International Conference on System Theory, Control and Computing. 2011,
pp. 1–6.

[63] Madita Willsch et al. “Benchmarking the quantum approximate optimization algo-
rithm”. In: Quantum Information Processing 19.7 (2020). issn: 1573-1332. doi: 10.1
007/s11128-020-02692-8. url: https://arxiv.org/pdf/1907.02359.

[64] B. Korte and J. Vygen. “Combinatorial Optimization: Theory and Algorithms”. In:
undefined (2007). url: https://www.semanticscholar.org/paper/Combinatori
al-Optimization%3A-Theory-and-Algorithms-Korte-Vygen/bd8563e97ca1278
db2bda9cce53abadc912f7a18.

[65] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. “A Quantum Approximate
Optimization Algorithm”. In: MIT-CTP (2014). url: https://arxiv.org/pdf/141
1.4028.

[66] D-Wave Systems Inc. “The D-Wave Advantage System: An Overview”. In: (). url:
https://www.dwavesys.com/media/s3qbjp3s/14-1049a-a_the_d-wave_advanta
ge_system_an_overview.pdf (visited on 10/04/2022).

[67] Leo Zhou et al. “Quantum Approximate Optimization Algorithm: Performance, Mech-
anism, and Implementation on Near-Term Devices”. In: Physical Review X 10.2
(2020). issn: 2160-3308. doi: 10.1103/PhysRevX.10.021067. url: https://arxiv.
org/pdf/1812.01041.

[68] Andrew Lucas. “Ising formulations of many NP problems”. In: Frontiers in Physics
2 (2014). issn: 2296-424X. doi: 10.3389/fphy.2014.00005. url: https://arxiv.
org/pdf/1302.5843.

[69] Andreas Bengtsson et al. “Improved Success Probability with Greater Circuit Depth
for the Quantum Approximate Optimization Algorithm”. In: Physical Review Applied
14.3 (2020). issn: 2331-7019. doi: 10.1103/PhysRevApplied.14.034010.

[70] Yu-Qin Chen et al. Optimizing Quantum Annealing Schedules with Monte Carlo Tree
Search enhanced with neural networks. 2020. url: https://arxiv.org/pdf/2004.0
2836.

[71] Ting-Jui Hsu et al. Quantum annealing with anneal path control: application to 2-SAT
problems with known energy landscapes. 2018. url: https://arxiv.org/pdf/1810
.00194.

[72] Vrinda Mehta et al. Quantum Annealing with Trigger Hamiltonians: Application to
2-SAT and Nonstoquastic Problems. 2021. doi: 10.1103/PhysRevA.104.032421.
url: https://arxiv.org/pdf/2106.04864.

[73] Vrinda Mehta et al. “Quantum annealing for hard 2-satisfiability problems: Distri-
bution and scaling of minimum energy gap and success probability”. In: Physical
Review A 105.6 (2022). issn: 2469-9934. doi: 10.1103/PhysRevA.105.062406. url:
https://arxiv.org/pdf/2202.00118.

107

https://docs.nvidia.com/deeplearning/nccl/
https://docs.nvidia.com/deeplearning/nccl/
https://docs.nvidia.com/nvshmem/index.html
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1007/s11128-020-02692-8
https://doi.org/10.1007/s11128-020-02692-8
https://arxiv.org/pdf/1907.02359
https://www.semanticscholar.org/paper/Combinatorial-Optimization%3A-Theory-and-Algorithms-Korte-Vygen/bd8563e97ca1278db2bda9cce53abadc912f7a18
https://www.semanticscholar.org/paper/Combinatorial-Optimization%3A-Theory-and-Algorithms-Korte-Vygen/bd8563e97ca1278db2bda9cce53abadc912f7a18
https://www.semanticscholar.org/paper/Combinatorial-Optimization%3A-Theory-and-Algorithms-Korte-Vygen/bd8563e97ca1278db2bda9cce53abadc912f7a18
https://arxiv.org/pdf/1411.4028
https://arxiv.org/pdf/1411.4028
https://www.dwavesys.com/media/s3qbjp3s/14-1049a-a_the_d-wave_advantage_system_an_overview.pdf
https://www.dwavesys.com/media/s3qbjp3s/14-1049a-a_the_d-wave_advantage_system_an_overview.pdf
https://doi.org/10.1103/PhysRevX.10.021067
https://arxiv.org/pdf/1812.01041
https://arxiv.org/pdf/1812.01041
https://doi.org/10.3389/fphy.2014.00005
https://arxiv.org/pdf/1302.5843
https://arxiv.org/pdf/1302.5843
https://doi.org/10.1103/PhysRevApplied.14.034010
https://arxiv.org/pdf/2004.02836
https://arxiv.org/pdf/2004.02836
https://arxiv.org/pdf/1810.00194
https://arxiv.org/pdf/1810.00194
https://doi.org/10.1103/PhysRevA.104.032421
https://arxiv.org/pdf/2106.04864
https://doi.org/10.1103/PhysRevA.105.062406
https://arxiv.org/pdf/2202.00118

Bibliography

[74] Tameem Albash and Daniel A. Lidar. “Adiabatic quantum computation”. In: Reviews
of Modern Physics 90.1 (2018). issn: 1539-0756. doi: 10.1103/RevModPhys.90.015
002.

[75] Philipp Hauke et al. Perspectives of quantum annealing: methods and implementa-
tions. 2020. doi: 10.1088/1361-6633/ab85b8. url: https://arxiv.org/pdf/1903
.06559.

[76] E. Farhi et al. “A quantum adiabatic evolution algorithm applied to random instances
of an NP-complete problem”. In: Science 292.5516 (2001), pp. 472–475. issn: 1095-
9203. doi: 10.1126/science.1057726. url: https://arxiv.org/pdf/quant-ph/0
104129.

[77] A. B. Finnila et al. “Quantum annealing: A new method for minimizing multidi-
mensional functions”. In: Chemical Physics Letters 219.5-6 (1994), pp. 343–348. issn:
0009-2614. doi: 10.1016/0009-2614(94)00117-0. url: https://arxiv.org/pdf/
chem-ph/9404003.

[78] M. Born and V. Fock. “Beweis des Adiabatensatzes”. In: Zeitschrift fr Physik 51.3-4
(1928), pp. 165–180. issn: 1434-601X. doi: 10.1007/BF01343193.

[79] M. H. S. Amin. “Consistency of the adiabatic theorem”. In: Physical Review Letters
102.22 (2009), p. 220401. issn: 0031-9007. doi: 10.1103/PhysRevLett.102.220401.
url: https://arxiv.org/pdf/0810.4335.

[80] D-Wave Systems Inc. Anneal Schedules. url: https://docs.dwavesys.com/docs/
latest/doc_physical_properties.html.

[81] Adam Callison et al. “Energetic Perspective on Rapid Quenches in Quantum Anneal-
ing”. In: PRX Quantum 2.1 (2021). issn: 2691-3399. doi: 10.1103/PRXQuantum.2.0
10338. url: https://arxiv.org/pdf/2007.11599.

[82] Lishan Zeng, Jun Zhang, and Mohan Sarovar. “Schedule path optimization for adia-
batic quantum computing and optimization”. In: Journal of Physics A: Mathematical
and Theoretical 49.16 (2016), p. 165305. issn: 1751-8121. doi: 10.1088/1751-8113
/49/16/165305. url: https://arxiv.org/pdf/1505.00209.

[83] Lucas T. Brady et al. “Optimal Protocols in Quantum Annealing and Quantum
Approximate Optimization Algorithm Problems”. In: Physical Review Letters 126.7
(2021), p. 070505. issn: 1079-7114. doi: 10.1103/PhysRevLett.126.070505. url:
https://arxiv.org/pdf/2003.08952.

[84] E. J. Crosson and D. A. Lidar. “Prospects for quantum enhancement with diabatic
quantum annealing”. In: Nature Reviews Physics 3.7 (2021), pp. 466–489. issn: 2522-
5820. doi: 10.1038/s42254-021-00313-6. url: https://arxiv.org/pdf/2008.09
913.

[85] Siddharth Muthukrishnan, Tameem Albash, and Daniel A. Lidar. “Tunneling and
Speedup in Quantum Optimization for Permutation-Symmetric Problems”. In: Phys-
ical Review X 6.3 (2016). issn: 2160-3308. doi: 10.1103/PhysRevX.6.031010. url:
https://arxiv.org/pdf/1511.03910.

[86] Itay Hen and A. P. Young. “Exponential complexity of the quantum adiabatic algo-
rithm for certain satisfiability problems”. In: Physical review. E, Statistical, nonlinear,
and soft matter physics 84.6 Pt 1 (2011), p. 061152. issn: 1539-3755. doi: 10.1103
/PhysRevE.84.061152. url: https://arxiv.org/pdf/1109.6872.

108

https://doi.org/10.1103/RevModPhys.90.015002
https://doi.org/10.1103/RevModPhys.90.015002
https://doi.org/10.1088/1361-6633/ab85b8
https://arxiv.org/pdf/1903.06559
https://arxiv.org/pdf/1903.06559
https://doi.org/10.1126/science.1057726
https://arxiv.org/pdf/quant-ph/0104129
https://arxiv.org/pdf/quant-ph/0104129
https://doi.org/10.1016/0009-2614(94)00117-0
https://arxiv.org/pdf/chem-ph/9404003
https://arxiv.org/pdf/chem-ph/9404003
https://doi.org/10.1007/BF01343193
https://doi.org/10.1103/PhysRevLett.102.220401
https://arxiv.org/pdf/0810.4335
https://docs.dwavesys.com/docs/latest/doc_physical_properties.html
https://docs.dwavesys.com/docs/latest/doc_physical_properties.html
https://doi.org/10.1103/PRXQuantum.2.010338
https://doi.org/10.1103/PRXQuantum.2.010338
https://arxiv.org/pdf/2007.11599
https://doi.org/10.1088/1751-8113/49/16/165305
https://doi.org/10.1088/1751-8113/49/16/165305
https://arxiv.org/pdf/1505.00209
https://doi.org/10.1103/PhysRevLett.126.070505
https://arxiv.org/pdf/2003.08952
https://doi.org/10.1038/s42254-021-00313-6
https://arxiv.org/pdf/2008.09913
https://arxiv.org/pdf/2008.09913
https://doi.org/10.1103/PhysRevX.6.031010
https://arxiv.org/pdf/1511.03910
https://doi.org/10.1103/PhysRevE.84.061152
https://doi.org/10.1103/PhysRevE.84.061152
https://arxiv.org/pdf/1109.6872

Bibliography

[87] Tameem Albash and Daniel A. Lidar. “Demonstration of a Scaling Advantage for
a Quantum Annealer over Simulated Annealing”. In: Physical Review X 8.3 (2018).
issn: 2160-3308. doi: 10.1103/PhysRevX.8.031016. url: https://arxiv.org/
pdf/1705.07452.

[88] Michael Streif and Martin Leib. Comparison of QAOA with Quantum and Simulated
Annealing. 2019. url: https://arxiv.org/pdf/1901.01903.

[89] Edward Farhi and Aram W. Harrow. “Quantum Supremacy through the Quantum
Approximate Optimization Algorithm”. In: MIT/CTP- (2019). url: https://arxiv.
org/pdf/1602.07674.

[90] Andreas Bartschi and Stephan Eidenbenz. “Grover Mixers for QAOA: Shifting Com-
plexity from Mixer Design to State Preparation”. In: LA-UR-20- (2020), pp. 72–82.
doi: 10.1109/QCE49297.2020.00020. url: https://arxiv.org/pdf/2006.00354.

[91] Stuart Hadfield et al. “From the Quantum Approximate Optimization Algorithm to
a Quantum Alternating Operator Ansatz”. In: Algorithms 12.2 (2019), p. 34. issn:
1999-4893. doi: 10.3390/a12020034. url: https://arxiv.org/pdf/1709.03489.

[92] V. Akshay et al. “Parameter concentrations in quantum approximate optimization”.
In: Physical Review A 104.1 (2021). issn: 2469-9934. doi: 10.1103/PhysRevA.104
.L010401. url: https://arxiv.org/pdf/2103.11976.

[93] Brandao, Fernando G. S. L. et al. For Fixed Control Parameters the Quantum Approx-
imate Optimization Algorithm’s Objective Function Value Concentrates for Typical
Instances. 2018. url: https://arxiv.org/pdf/1812.04170.

[94] Sami Khairy et al. “Learning to Optimize Variational Quantum Circuits to Solve
Combinatorial Problems”. In: Proceedings of the AAAI Conference on Artificial In-
telligence 34.03 (2020), pp. 2367–2375. issn: 2159-5399. doi: 10.1609/aaai.v34i03
.5616. url: https://arxiv.org/pdf/1911.11071.

[95] Michael Streif and Martin Leib. Training the Quantum Approximate Optimization
Algorithm without access to a Quantum Processing Unit. url: https://arxiv.org/
pdf/1908.08862.

[96] Ruslan Shaydulin, Ilya Safro, and Jeffrey Larson. “Multistart Methods for Quantum
Approximate optimization”. In: 2019 IEEE High Performance Extreme Computing
Conference (HPEC) (2019), pp. 1–8. doi: 10.1109/HPEC.2019.8916288. url: http
s://arxiv.org/pdf/1905.08768.

[97] Hans de Raedt and Bart de Raedt. “Applications of the generalized Trotter formula”.
In: Physical Review A 28.6 (1983), pp. 3575–3580. issn: 2469-9926. doi: 10.1103
/PhysRevA.28.3575.

[98] Dorit Aharonov et al. “Quantum Walks On Graphs”. In: Proceedings of ACM Sym-
posium on Theory of Computation (STOC’01), July (2002). url: https://arxiv.
org/pdf/quant-ph/0012090.

[99] Salvador Elías Venegas-Andraca. “Quantum walks: a comprehensive review”. In:
Quantum Information Processing 11.5 (2012), pp. 1015–1106. issn: 1573-1332. doi:
10.1007/s11128-012-0432-5. url: https://arxiv.org/pdf/1201.4780.

[100] Edward Farhi and Sam Gutmann. “Quantum computation and decision trees”. In:
Physical review. A, Atomic, molecular, and optical physics 58.2 (1998), pp. 915–928.
issn: 1050-2947. doi: 10.1103/PhysRevA.58.915. url: https://arxiv.org/pdf/
quant-ph/9706062.

109

https://doi.org/10.1103/PhysRevX.8.031016
https://arxiv.org/pdf/1705.07452
https://arxiv.org/pdf/1705.07452
https://arxiv.org/pdf/1901.01903
https://arxiv.org/pdf/1602.07674
https://arxiv.org/pdf/1602.07674
https://doi.org/10.1109/QCE49297.2020.00020
https://arxiv.org/pdf/2006.00354
https://doi.org/10.3390/a12020034
https://arxiv.org/pdf/1709.03489
https://doi.org/10.1103/PhysRevA.104.L010401
https://doi.org/10.1103/PhysRevA.104.L010401
https://arxiv.org/pdf/2103.11976
https://arxiv.org/pdf/1812.04170
https://doi.org/10.1609/aaai.v34i03.5616
https://doi.org/10.1609/aaai.v34i03.5616
https://arxiv.org/pdf/1911.11071
https://arxiv.org/pdf/1908.08862
https://arxiv.org/pdf/1908.08862
https://doi.org/10.1109/HPEC.2019.8916288
https://arxiv.org/pdf/1905.08768
https://arxiv.org/pdf/1905.08768
https://doi.org/10.1103/PhysRevA.28.3575
https://doi.org/10.1103/PhysRevA.28.3575
https://arxiv.org/pdf/quant-ph/0012090
https://arxiv.org/pdf/quant-ph/0012090
https://doi.org/10.1007/s11128-012-0432-5
https://arxiv.org/pdf/1201.4780
https://doi.org/10.1103/PhysRevA.58.915
https://arxiv.org/pdf/quant-ph/9706062
https://arxiv.org/pdf/quant-ph/9706062

Bibliography

[101] Bruno Chagas and Renato Portugal. “Discrete-Time Quantum Walks on Oriented
Graphs”. In: Electronic Proceedings in Theoretical Computer Science 315 (2020),
pp. 26–37. doi: 10.4204/EPTCS.315.3. url: https://arxiv.org/pdf/2001.04814.

[102] Mahesh N. Jayakody, Chandrakala Meena, and Priodyuti Pradhan. One-dimensional
discrete-time quantum walks with general coin. 2021. url: https://arxiv.org/pdf/
2102.07207.

[103] Renato Portugal, Stefan Boettcher, and Stefan Falkner. “One-dimensional coinless
quantum walks”. In: Physical review. A, Atomic, molecular, and optical physics 91.5
(2015). issn: 1050-2947. doi: 10.1103/PhysRevA.91.052319. url: https://arxiv.
org/pdf/1408.5166.

[104] Adam Callison et al. “Finding spin glass ground states using quantum walks”. In:
New Journal of Physics 21.12 (2019), p. 123022. doi: 10.1088/1367-2630/ab5ca2.
url: https://arxiv.org/pdf/1903.05003.

[105] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. “Optimization by simulated anneal-
ing”. In: Science (New York, N.Y.) 220.4598 (1983), pp. 671–680. doi: 10.1126
/science.220.4598.671.

[106] Stefan H. Sack and Maksym Serbyn. “Quantum annealing initialization of the quan-
tum approximate optimization algorithm”. In: Quantum 5 (2021), p. 491. issn: 2521-
327X. doi: 10.22331/q-2021-07-01-491. url: https://arxiv.org/pdf/2101.05
742.

[107] Charles Moussa et al. Unsupervised strategies for identifying optimal parameters in
Quantum Approximate Optimization Algorithm. 2022. doi: 10.1140/epjqt/s40507
-022-00131-4. url: https://arxiv.org/pdf/2202.09408.

[108] Matteo M. Wauters et al. “Reinforcement-learning-assisted quantum optimization”.
In: Physical Review Research 2.3 (2020). doi: 10.1103/PhysRevResearch.2.033446.
url: https://arxiv.org/pdf/2004.12323.

[109] Ruslan Shaydulin et al. Parameter Transfer for Quantum Approximate Optimization
of Weighted MaxCut. 2022. url: https://arxiv.org/pdf/2201.11785.

[110] J. A. Nelder and R. Mead. “A Simplex Method for Function Minimization”. In: The
Computer Journal 7.4 (1965), pp. 308–313. issn: 1460-2067. doi: 10.1093/comjnl/7
.4.308.

[111] Mario Fernández-Pendás et al. “A study of the performance of classical minimizers in
the Quantum Approximate Optimization Algorithm”. In: Journal of Computational
and Applied Mathematics 404 (2022), p. 113388. issn: 0377-0427. doi: 10.1016/j.
cam.2021.113388. url: https://www.sciencedirect.com/science/article/
pii/S0377042721000078.

[112] Thomas G. Draper. Addition on a Quantum Computer. 2000. url: https://arxiv.
org/pdf/quant-ph/0008033.

[113] Chandra, Rohit and Dagum, Leo and Kohr, David and Menon, Ramesh and Maydan,
Dror and McDonald, Jeff. Parallel programming in OpenMP. 2001. url: http://
www.openmp.org/resources/openmp-compilers/.

110

https://doi.org/10.4204/EPTCS.315.3
https://arxiv.org/pdf/2001.04814
https://arxiv.org/pdf/2102.07207
https://arxiv.org/pdf/2102.07207
https://doi.org/10.1103/PhysRevA.91.052319
https://arxiv.org/pdf/1408.5166
https://arxiv.org/pdf/1408.5166
https://doi.org/10.1088/1367-2630/ab5ca2
https://arxiv.org/pdf/1903.05003
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.22331/q-2021-07-01-491
https://arxiv.org/pdf/2101.05742
https://arxiv.org/pdf/2101.05742
https://doi.org/10.1140/epjqt/s40507-022-00131-4
https://doi.org/10.1140/epjqt/s40507-022-00131-4
https://arxiv.org/pdf/2202.09408
https://doi.org/10.1103/PhysRevResearch.2.033446
https://arxiv.org/pdf/2004.12323
https://arxiv.org/pdf/2201.11785
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1016/j.cam.2021.113388
https://doi.org/10.1016/j.cam.2021.113388
https://www.sciencedirect.com/science/article/pii/S0377042721000078
https://www.sciencedirect.com/science/article/pii/S0377042721000078
https://arxiv.org/pdf/quant-ph/0008033
https://arxiv.org/pdf/quant-ph/0008033
http://www.openmp.org/resources/openmp-compilers/
http://www.openmp.org/resources/openmp-compilers/

Appendix

A. Implemented gate operations
The following list gives an overview of the quantum gates implemented by SEQCS. Note
that {H, T = Rz (π/4) , CNOT} represents a universal gate set, allowing to approximate
any quantum circuit to arbitrary precision [32, 33].

Single-qubit diagonal gates:

Z = (1 0
0 −1) S = (1 0

0 i
) S† = (1 0

0 −i)

T = (1 0
0 (1 + i) /

√
2) T † = (1 0

0 (1 − i) /
√

2) Rz (γ) = (
1 0
0 eiγ)

R (k) = (1 0
0 e2πi/2k) R† (k) = (1 0

0 e−2πi/2k)

Single-qubit non-diagonal gates:

H = 1√
2 (

1 1
1 −1) X = (0 1

1 0) Y = (0 −i
i 0)

±X = 1√
2 (

1 ±i
±i 1) ±Y = 1√

2 (
1 ±1
∓1 1)

Rx (γ) = (
cos (γ

2) −i sin (γ
2)

−i sin (γ
2) cos (γ

2)
) Ry (γ) = (

cos (γ
2) − sin (γ

2)
sin (γ

2) cos (γ
2)
)

U2 (ϕ,λ) = 1√
2 (

1 −eiλ

eiϕ ei(ϕ+λ)) U3 (θ, ϕ, λ) = (cos (θ
2) −eiλ sin (θ

2)
eiϕ sin (θ

2) ei(ϕ+λ) cos (θ
2)
)

111

Appendix

Multi-qubit gates:

CNOT =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎟
⎠

CZ =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎟
⎠

U (k) =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e2πi/2k

⎞
⎟⎟⎟
⎠

U † (k) =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e−2πi/2k

⎞
⎟⎟⎟
⎠

ZZ (γ) =

⎛
⎜⎜⎜⎜
⎝

e−i γ
2 0 0 0

0 ei γ
2 0 0

0 0 ei γ
2 0

0 0 0 e−i γ
2

⎞
⎟⎟⎟⎟
⎠

TOFFOLI =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

112

B. Quantum circuits

B. Quantum circuits
B.1. Quantum approximate optimization algorithm
Figures B.1 and B.2 depict the circuit representation of the Quantum approximate optimiza-
tion algorithm (QAOA) [65]. A detailed description of the algorithm can be found in section
2.2.2. Figure B.3 presents a typical gate schedule used by SEQCS to evaluate the QAOA.

Layer 0 Layer p − 1

∣q0⟩ H

ÛC (γ0)

Rx (2β0) . . .

ÛC (γp−1)

Rx (2βp−1)

∣q0⟩ H Rx (2β0) . . . Rx (2βp−1)

∣q0⟩ H Rx (2β0) . . . Rx (2βp−1)

⋮ ⋮ ⋮ ⋮ ⋮

∣qN−1⟩ H Rx (2β0) . . . Rx (2βp−1)

Figure B.1.: The figure depicts the QAOA circuit (see section 2.2.2) applied to an N qubit
register. The circuit is composed of p layers (see dashed-boxes), each consisting
of a fully diagonal transformation ÛC (γp) and a set of Rx(2βp) rotations applied
to every qubit. The respective operations are controlled via the sets of variational
parameters {βk < p} and {γk < p}. ÛC is determined by the problem Hamiltonian
(see Eq. 2.2) in question. Figure B.2 presents a possible circuit realization of
ÛC .

113

Appendix

N
on

-d
ia

go
na

le
le

m
en

ts
:
θi j
≠

i
D

ia
go

na
le

le
m

en
ts

:
θi i

∣q 0
⟩

Û
C
(γ

p
)

Z
Z
(θ

0 1)
Z
Z
(θ

0 2)
..
.

R
z
(θ

0 0)

∣q 1
⟩

Z
Z
(θ

0 1)
Z
Z
(θ

1 3)
..
.

R
z
(θ

1 1)

∣q 2
⟩

Z
Z
(θ

2 3)
Z
Z
(θ

0 2)
..
.

R
z
(θ

2 2)

∣q 3
⟩

Z
Z
(θ

2 3)
Z
Z
(θ

1 3)
..
.

R
z
(θ

3 3)

⋮
=

⋮
⋮

⋮
⋮

∣q N
−4
⟩

Z
Z
(θ

N
−4

N
−3
)

Z
Z
(θ

N
−4

N
−2
)

..
.

R
z
(θ

N
−4

N
−4
)

∣q N
−3
⟩

Z
Z
(θ

N
−4

N
−3
)

Z
Z
(θ

N
−3

N
−1
)

..
.

R
z
(θ

N
−3

N
−3
)

∣q N
−2
⟩

Z
Z
(θ

N
−2

N
−1
)

Z
Z
(θ

N
−4

N
−2
)

..
.

R
z
(θ

N
−2

N
−2
)

∣q N
−1
⟩

Z
Z
(θ

N
−2

N
−1
)

Z
Z
(θ

N
−3

N
−1
)

..
.

R
z
(θ

N
−1

N
−1
)

Figure B.2.: The figure depicts a circuit realization of the ÛC (γp) transformation on an N
qubit register used within one QAOA layer (see section 2.2.2). The rotation
angles θi

j = 0.125 ⋅ γp ⋅ Qi,j are determined using the variational parameter γp

of the pth QAOA layer and the matrix element Qi,j of the problem’s QUBO
formulation (see Eq. 2.1). Since the circuit is constructed using only diagonal
gates (ZZ and Rz gates), SEQCS is able to evaluate ÛC (γp) within a single
memory traversal with no MPI communication involved.

114

B. Quantum circuits

∣q 0
⟩

H
0 ⊗ H
1

SWAP: {q1 0, q1 1} ↔ {q12, q13}

ÛC (γ0)

R
x 0
(2

β
0
)

⊗
R

x 1
(2

β
0
)

SWAP: {q12, q13} ↔ {q1 0, q1 1}

ÛC (γ1)

R
x 0
(2

β
1
)

⊗
R

x 1
(2

β
1
)

SWAP: {q1 0, q1 1} ↔ {q12, q13}

∣q 1
⟩

∣q 2
⟩

H
2 ⊗ H
3

R
x 2
(2

β
0
)

⊗
R

x 3
(2

β
0
)

R
x 2
(2

β
1
)

⊗
R

x 3
(2

β
1
)

∣q 3
⟩

∣q 4
⟩

H
4 ⊗ H
5

R
x 4
(2

β
0
)

⊗
R

x 5
(2

β
0
)

R
x 4
(2

β
1
)

⊗
R

x 5
(2

β
1
)

∣q 5
⟩

∣q 6
⟩

H
6 ⊗ H
7

R
x 6
(2

β
0
)

⊗
R

x 7
(2

β
0
)

R
x 6
(2

β
1
)

⊗
R

x 7
(2

β
1
)

∣q 7
⟩

∣q 8
⟩

H
8 ⊗ H
9

R
x 8
(2

β
0
)

⊗
R

x 9
(2

β
0
)

R
x 8
(2

β
1
)

⊗
R

x 9
(2

β
1
)

∣q 9
⟩

∣q 1
0
⟩

H
1

0
⊗

H
1

1

R
x 1

0
(2

β
0
)

⊗
R

x 1
1
(2

β
0
)

R
x 1

0
(2

β
1
)

⊗
R

x 1
1
(2

β
1
)

∣q 1
1
⟩

∣q 1
2
⟩

H
12 ⊗

H
13

R
x 0
(2

β
12
)

⊗
R

x 13
(2

β
0
)

R
x 1

1
(2

β
1
)

⊗
R

x 12
(2

β
1
)

∣q 1
3
⟩

115

Appendix

Figure B.3.: (Previous page.) The figure illustrates a typical gate-schedule used by SEQCS
to simulate an N = 14 qubit QAOA circuit with p = 2. For illustration purposes,
the number of local qubits is set to NL = 10, yielding NG = 2 global qubits
(= 4 GPUs), and the gate-cluster size is limited to 6 qubits. Each gate-cluster
is visualized by a dashed-box. Moreover, the diagonal transformation ÛC (γp) is
evaluated using a single memory traversal. Note that SEQCS generally removes
the initial set of Hadamard gates, by initializing the system in the equal super-
position state ∣+⟩⊗N . Consequentially, one combined global-local qubit exchange
is required per QAOA layer.

116

B. Quantum circuits

B.2. Quantum Fourier transformation

∣q 0
⟩

H
U
(2
)

..
.

U
(N
−

1)
U
(N
)

..
.

..
.

∣q 1
⟩

●
..

.
H

..
.

U
(N
−

2)
U
(N
−

1)
..

.

⋮
⋮

∣q N
−2
⟩

..
.

●
..

.
●

..
.

H
U
(2
)

∣q N
−1
⟩

..
.

●
..

.
●

..
.

●
H

Figure B.4.: The figure depicts the circuit of the quantum Fourier transformation (QFT)
[31] applied to an N qubit register. Given some initial state ∣J⟩ = ∣q0⟩ ⊗ ⋅ ⋅ ⋅ ⊗
∣qN−1⟩ the circuit produces the transformed state 1√

2N
[∣0⟩ + e2N−1 π i x ∣1⟩] ⊗ ⋅ ⋅ ⋅ ⊗

[∣0⟩ + e20 π i x ∣1⟩]. Hence, measuring the qubits in the computational basis after-
wards, one obtains the QFT of J with the bits in reversed order. Since the
circuit only involves diagonal multi-qubit gates, SEQCS is able to simulate the
QFT using ⌈ N

NC
⌉ gate-clusters. Moreover, consecutive U (k) gates can be com-

bined into a single memory traversal.

117

Appendix

B.3. Quantum adder

∣ a
N
/2
−1
⟩

N
/2
−1
∏ i=

0
X

a
i

i

●
..

.
..

.

⋮
⋮

∣a
1⟩

..
.

●
..

.

∣a
0⟩

..
.

●
..

.
●

∣ b N
/2
−1
⟩

N
/2
−1
∏ i=

0
X

b i i
Q

F
T

U
(1
)

..
.

U
(N
/2
−

1)
U
(N
/2
)

..
.

Q
F

T
†

⋮
⋮

∣b 1
⟩

..
.

..
.

∣b 0
⟩

..
.

..
.

U
(1
)

Figure B.5.: The figure depicts the circuit of a quantum adder [112] using the quan-
tum Fourier transformation to calculate the sum of two N/2 bit integers
a = [aN/2−1 . . . a0]2 and b = [bN/2−1 . . . b0]2. Both registers are initialized in
the ground state ∣0⟩⊗N and set to a and b using a sequence of X gates based
on the binary representation of the two integers. Note that SEQCS is able to
simulate consecutive U(k) gates within a single memory traversal.

118

C. GPU architecture

C. GPU architecture

Figure C.6.: The figure depicts the Ampere architecture of a NVIDIA GA100 GPU featuring
128 SMs (the A100 GPU offers the same architecture with 108 SMs) [54].

119

Appendix

Figure C.7.: The figure depicts the design of a Streaming Multiprocessor (SM) in the Ampere
architecture used by the A100 GPU [54].

120

D. SEQCS program code

D. SEQCS program code
SEQCS is a high-performance GPU-accelerated classical quantum circuit simulator written
in C++ using CUDA and CUDA-aware MPI. Its program files can be found at https:
//jugit.fz-juelich.de/qip/seqcs/-/tree/main/src.

121

https://jugit.fz-juelich.de/qip/seqcs/-/tree/main/src
https://jugit.fz-juelich.de/qip/seqcs/-/tree/main/src

Appendix

E. Algorithms
E.1. Insertion of qubit swaps
The algorithm depicted in E.1 is used during the circuit preprocessing of SEQCS (see Fig. 1.2)
to insert combined global-local qubits exchanges into the gate queue. The SWAP operations
are optimized, such that multiple consecutive exchanges are combined and the total number
of qubit transfers is minimized.

f o r each gate Ĝk in the queue {

i f Ĝk opera te s on g l o b a l qub i t s o f σk {

AG = [TG of Ĝk] ;
AL = [TL of Ĝk] ;

f o r each gate Ĝj>k in the queue {

i f size(AG) > N − size(AL ∪ TL)
break ;

AG = AG ∪ TG ;
AL = AL ∪ TL ;

}

I n s e r t SWAPAG ↔ A−1
L

at p o s i t i o n k in the c i r c u i t ;
Update σj >k ;

}

}

Algorithm E.1: Insertion of SWAP operations into gate queue. Here, Ĝk denotes a gate at
position k in the queue, with TG and TL being arrays of its global and local
target qubits, and σk is the qubit permutation at gate Ĝk.

122

E. Algorithms

E.2. MPI communication scheme
The algorithm depicted in E.2 presents the MPI communication scheme used to exchange
K local and global qubits. It separates the GPU network into 2NG−K groups of 2K communi-
cating GPUs each. In doing so, each GPU must exchange 2NL−K state amplitudes with every
GPU in its respective group. These transfers are performed in disjoint pairs, such that each
GPU only communicates with one other GPU at a given time, in order to reduce the impact
of MPI synchronization barriers. In doing so, each subset of exchanged local state vectors
is constructed via the MPI data types: MPI_Type_continuous, MPI_Type_vector and
MPI_Type_indexed.

Count Igroup from 1 to 2K {

Bsend = [] ; // Amplitude b u f f e r send to other GPU
Brecv = [] ; // Amplitude b u f f e r r e c i e v e d from other GPU

Count IAmplitude from 0 to 2NL−K {

Bsend [IAmplitude] = Ψ [S (IAmplitude, I local
M)] ;

}

Exchange Bsend with MPI−rank R ∧ S (Igroup, Iglobal
M) i n t o Brecv ;

Count IAmplitude from 0 to 2NL−K {

Ψ [S (IAmplitude, I local
M)] = Brecv [IAmplitude] ;

}

}

Algorithm E.2: MPI communication scheme for exchaning K local and global qubits. Here,
I local

M and Iglobal
M denote 32 bit integers with 1’s at the bit positions of the

target local and global qubits, respectively. E.g. exchanging the local qubits 0
and 2 with the global qubits 5 and 7 (K = 2) with NL = 4, yields I local

M = 0 1 0 1
and Iglobal

M = 1 0 1 0. Moreover, R is the MPI-rank of the respective GPU, and
Ψ refers to the array of 2NL local state amplitudes. S(L, J) denotes a bit-wise
shift operation that returns a bitstring with the bit values of L consecutive
distributed among the set bit posistions in J . E.g. S (0 0 1 1, 1 1 0 1) = 0 1 0 1.

123

Appendix

E.3. Creation of gate-clusters
The algorithm depicted in E.3 is used during the circuit preprocessing of SEQCS (see Fig. 1.2)
to rearrange the gate-queue and form gate-clusters. Each gate-cluster can be simulated using
a single kernel call, thus allowing to reuse state amplitudes stored in the shared memory
during the evaluation of its gates. Consequentially, the algorithm is designed to maximize
the cluster size and hence minimize the number of kernel calls. Moreover, Fig. E.8 illustrates
the transfer of the amplitudes between the global memory and shared memory.

Clus t e r s = [] ; // Fina l gate−c l u s t e r s

f o r each gate Ĝk in the queue {

Qubits = L i s t o f N qub i t s i n i t i a l i z e d as unobstructed
Clus te r = [Ĝk] // L i s t o f ga te s forming the new c l u s t e r

f o r each gate Ĝj >k in Queue {

i f i n s e r t i n g Ĝj i n t o Clus te r v i o l a t e s shared−memory
or constant−memeory r e s t r i c t i o n s

f o r each q in Tj

Set Qubits[q] as obst ructed ;

i f f o r a l l q in Tj Qubits[q] i s not obst ructed
I n s e r t Ĝj i n t o Clus te r ;

e l s e
f o r each q in Tj

Set Qubits[q] as obst ructed ;

}

I n s e r t C lus te r i n to C lu s t e r s ;
Remove Clus te r from Queue ;

}

Algorithm E.3: Creation of gate-clusters. Here, Ĝk denotes a gate at position k in the gate-
queue, with Tk being an array of its target qubits.

124

E. Algorithms

a 1
a 2

i
a 2

j
a 2

i +2
j

a 1
a 2

i
a 2

j
a 2

i +2
j

a 1
a 2

i
a 2

j
a 2

i +2
j

a 1
a 2

i
a 2

j
a 2

i +2
j

a 1
a 2

i
a 2

j
a 2

i +2
j

Shared memory: real amplitudes

a 1
a 2

i
a 2

j
a 2

i +2
j

a 1
a 2

i
a 2

j
a 2

i +2
j

a 1
a 2

i
a 2

j
a 2

i +2
j

Shared memory: imaginary amplitudes

C
om

pu
ta

tio
n

of

 g
at

e
ap

pl
ie

d

to
 q

ub
it

0

C
om

pu
ta

tio
n

of

 g
at

e
ap

pl
ie

d

to
 q

ub
it

1

a 1
a 2

i
a 2

j
a 2

i +2
j

a 1
a 2

i
a 2

j
a 2

i +2
j

C
om

pu
ta

tio
n

of

 g
at

e
ap

pl
ie

d

to
 q

ub
it

2

G
G

G
G

G
G

G
G

G
G

G
G

G
G

G
G

G
G

G
G

G
G

G
G

G
G

G
G

G
G

G
G

G
G

G
G

G
G

G
G

G
G

G
G

G
G

G
G

G
lo

ba
l m

em
or

y

G
lo

ba
l m

em
or

y

Figure E.8.: The figure depicts the proposed caching strategy of cluster-spaces in the shared
memory using NS = 4.

125

Appendix

E.4. Formation of gate-groups
The algorithm depicted in E.4 is used during the circuit preprocessing of SEQCS (see Fig. 1.2)
to rearrange the gate-queue and hence to form gate-groups. Each gate-group can be simu-
lated using a single shared-memory traversal, thus reducing the number of memory transac-
tions. Consequentially, the algorithm is designed to maximize the group size.

Groups = [] ; // Fina l gate−groups

f o r each gate Ĝk in the queue {

Qubits = L i s t o f N qub i t s i n i t i a l i z e d as unobstructed
Group = [Ĝk] // L i s t o f ga te s forming the new group

f o r each gate Ĝj >k in Queue {

i f i n s e r t i n g Ĝj i n t o Group v i o l a t e s
maximal group s i z e

break ;

i f type(Ĝk) == type(Ĝj) and f o r a l l q in Tj Qubits[q] i s unobstructed
or [p a r t i a l l y −obst ructed and Ĝj i s d iagona l]

I n s e r t Ĝj i n t o Group ;

e l s e
i f Ĝj i s d iagona l

f o r each q in Tj

Set Qubits[q] as p a r t i a l l y −obst ructed ;
e l s e

f o r each q in Tj

Set Qubits[q] as obst ructed ;

}

I n s e r t Group in to Groups ;
Remove Group from Queue ;

}

Algorithm E.4: Formation of gate-groups. Here, Ĝk denotes a gate at position k in the gate-
queue, with Tk being an array of its target qubits. The algorithm is executed
two times, with both nested loops iterating the gate queue in positive order
first, followed by a traversal in negative order.

126

E. Algorithms

E.5. Out-of-order gate execution

The out-of-order execution scheme is a technique used by SEQCS to prevent shared memory
bank conflicts in the evaluation of combined Hadamard, ±X and ±Y gates. It is based around
the observation, that in order to fully utilize the shared memory bandwidth the threads need
to access the initial state amplitudes as well as process them in a different order, potentially
causing significant warp divergences. In the following, the proposed strategy will be explained
with respect to two combined Hadamard and +X gates:

Hi ⊗ Hj = 1
2

⎛
⎜⎜⎜
⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞
⎟⎟⎟
⎠

+Xi ⊗ +Xj = 1
2

⎛
⎜⎜⎜
⎝

1 i i −1
i 1 −1 i
i −1 1 i
−1 i i 1

⎞
⎟⎟⎟
⎠

Table E.5: Tensor product matrix of two Hadamard (left) and two +X (right) gates in the
state-space of qubits i and j.

Consider a gate-pair applied to the first two bit-indices in the shared-memory (i = 0, j = 1),
i.e. the counting bits ci and cj are placed among the first 5 bit-positions in J (see Eq. 1.21),
which index the shared memory banks of the cached amplitudes. A key insight into the
combined evaluation of such gates is that when using the same traversal of the counting bits
(e.g. c1 c0 = 0 0→ 0 1→ 1 1→ 1 0) only a quarter of the shared memory banks is accessed each
time a state amplitude is requested from the memory, yielding a 4-way bank conflict. To
conquer this problem, SEQCS initializes ci and cj based on the threadID indices ti and
tj, respectively, hence starting at different positions in the inverse-gray code. In order to
prevent branch divergences during the expensive memory transactions, SEQCS stores the
amplitudes ψci, cj

among the variables Vkl in the order in which they are accessed from the
shared memory. In doing so, four separate thread groups emerge, each featuring a different
distribution of ψci, cj

among Vk l (see Tab. E.6).

ψ0, 0 ψ0, 1 ψ1, 0 ψ1, 1

t1 t0 = 0 0 V0 0 V0 1 V1 0 V1 1

t1 t0 = 0 1 V0 1 V0 0 V1 1 V1 0

t1 t0 = 1 0 V1 0 V1 1 V0 0 V0 1

t1 t0 = 1 1 V1 1 V0 1 V0 1 V0 0

Table E.6: Permutation of the state amplitudes ψci, cj
among the variables Vk l based on

threadID indices ti and tj.

Since the amount of registers on each SM is limited, each thread is only able to hold up to 6
double-precision floats simultaneously without causing register spilling. Moreover, the pro-
cessed amplitudes must be written back to the shared memory in a different order depending
on ti and tj to prevent bank-conflicts, yielding four separate instruction branches. Due to
these limitations, it is not possible to first reorder the amplitudes ψci, cj

among the variables
Vk l and then compute the altered amplitudes ψ′m n synchronously across the threads in a warp

127

Appendix

(i.e. all threads process ψ′m n at the same time), as the final amplitudes cannot be simulta-
neously held in the registers. To conquer this problem, SEQCS considers the real (ψreal

ci, cj
)

and imaginary (ψimag
ci, cj) part of the amplitudes separately (hence the separation of the real

and imaginary data in the shared memory; see section 1.2.3.2) and proposes an out-of-order
execution scheme, allowing to process all four instruction branches simultaneously. This is
done by exploiting the permutations of the amplitudes ψci, cj

among the variables Vk l and
the matrix coefficients in each row (see Tab. E.5), such that each thread can execute the
same instructions while processing a different amplitude ψ′ci, cj

. Tables E.7 and E.8 depict
the computation-order of the amplitudes for each thread group ti tj.

Hi ⊗ Hj

t1 t0 = 0 0 ψ′ real
0 0 = 1

2 (V0 0 + V0 1 + V1 0 + V1 1)

ψ′ real
0 1 = 1

2 (V0 0 − V0 1 + V1 0 − V1 1)

ψ′ real
1 1 = 1

2 (V0 0 − V0 1 − V1 0 + V1 1)

ψ′ real
1 0 = 1

2 (V0 0 + V0 1 − V1 0 − V1 1)

t1 t0 = 0 1 ψ′ real
0 1 = 1

2 (−V0 0 + V0 1 − V1 0 + V1 1)

ψ′ real
1 1 = 1

2 (−V0 0 + V0 1 + V1 0 − V1 1)

ψ′ real
1 0 = 1

2 (V0 0 + V0 1 − V1 0 − V1 1)

ψ′ real
0 0 = 1

2 (V0 0 + V0 1 + V1 0 + V1 1)

t1 t0 = 1 0 ψ′ imag
1 0 = 1

2 (−V0 0 − V0 1 + V1 0 + V1 1)

ψ′ real
0 0 = 1

2 (V0 0 + V0 1 + V1 0 + V1 1)

ψ′ real
0 1 = 1

2 (V0 0 − V0 1 + V1 0 − V1 1)

ψ′ real
1 1 = 1

2 (−V0 0 + V0 1 + V1 0 − V1 1)

t1 t0 = 1 1 ψ′ real
1 1 = 1

2 (V0 0 − V0 1 − V1 0 + V1 1)

ψ′ real
1 0 = 1

2 (−V0 0 − V0 1 + V1 0 + V1 1)

ψ′ real
0 0 = 1

2 (V0 0 + V0 1 + V1 0 + V1 1)

ψ′ real
0 1 = 1

2 (−V0 0 + V0 1 − V1 0 + V1 1)

Table E.7: Calculation of the first half of the altered amplitudes ψ′ci, cj
for the combined

Hadamard gate. The remaining amplitudes are determined identically by swap-
ping real ↔ imag. Each cell depicts the processing order based on the thread
group ti tj, e.g. t1 t0 = 0 0 calculates ψ′ real

0 0 → ψ′ real
0 1 → ψ′ real

1 1 → ψ′ real
1 0 .

128

E. Algorithms

+Xi ⊗ +Xj

t1 t0 = 0 0 ψ′ real
0 0 = 1

2 (V0 0 − V0 1 − V1 0 − V1 1)

ψ′ imag
0 1 = 1

2 (V0 0 + V0 1 − V1 0 + V1 1)

ψ′ real
1 1 = 1

2 (−V0 0 − V0 1 − V1 0 + V1 1)

ψ′ imag
1 0 = 1

2 (V0 0 − V0 1 + V1 0 + V1 1)

t1 t0 = 0 1 ψ′ real
0 1 = 1

2 (V0 0 − V0 1 − V1 0 − V1 1)

ψ′ imag
1 1 = 1

2 (V0 0 + V0 1 − V1 0 + V1 1)

ψ′ real
1 0 = 1

2 (−V0 0 − V0 1 − V1 0 + V1 1)

ψ′ imag
0 0 = 1

2 (V0 0 − V0 1 + V1 0 + V1 1)

t1 t0 = 1 0 ψ′ real
1 0 = 1

2 (V0 0 − V0 1 − V1 0 − V1 1)

ψ′ imag
0 0 = 1

2 (V0 0 + V0 1 − V1 0 + V1 1)

ψ′ real
0 1 = 1

2 (−V0 0 − V0 1 − V1 0 + V1 1)

ψ′ imag
1 1 = 1

2 (V0 0 − V0 1 + V1 0 + V1 1)

t1 t0 = 1 1 ψ′ real
1 1 = 1

2 (V0 0 − V0 1 − V1 0 − V1 1)

ψ′ imag
1 0 = 1

2 (V0 0 + V0 1 − V1 0 + V1 1)

ψ′ real
0 0 = 1

2 (−V0 0 − V0 1 − V1 0 + V1 1)

ψ′ imag
0 1 = 1

2 (V0 0 − V0 1 + V1 0 + V1 1)

Table E.8: Calculation of the first half of the altered amplitudes ψ′ci, cj
for the combined

+X gate. The remaining amplitudes are determined identically by swapping
real ↔ imag. Each cell depicts the processing order based on the thread group
ti tj, e.g. t1 t0 = 0 0 calculates ψ′ real

0 0 → ψ′ imag
0 1 → ψ′ real

1 1 → ψ′ imag
1 0 .

It is important to mention here that the evaluation ofHi⊗Hj demands conditioned negations
of some variables Vk l based on ti tj, causing small branch divergences (see discussion in section
1.3.3.2), while +Xi ⊗ +Xj can be executed fully synchronized as all threads in a warp must
perform the same instructions. The latter is because the permutation of ψci, cj

among Vk l

compensates the permutation of the matrix elements in Tab. E.5.

129

Appendix

F. Conversion between Ising and QUBO formulation
Equations F.1 and F.7 show the conversion between the QUBO formulation and the Ising
formulation of the cost function C (Z/S). Here, the former uses the classical N bit binary
string Z = [zN−1 . . . z0]2, while the latter operates on an N dimensional array of Ising
spins S = [sN−1 . . . s0]2. In this thesis, the gate-based quantum computing convention is
used, such that zi = 1

2 [1 − si]. In doing so, zi = 0 (zi = 1) is mapped to si = +1 =∧ spin− ↑
(si = −1 =∧ spin− ↓), hence one can simply replace the spin variables si by the Pauli-z
operators σ̂z

i to obtain the Ising formulation of the cost Hamiltonian ĤC . The latter is used
in quantum optimization algorithms (see section 2.2). Note that zi = z2

i , s2
i = 1, Qi,j = Qj,i

and Ji,j = Jj,i are used below.

CQUBO(Z) = ∑
i≤ j

Qi, j zi zj + CQUBO (F.1)

= ∑
i≤j
Qi, j (

1 − si

2) (
1 − sj

2) + CQUBO (F.2)

= 1
4∑i

Qi, i [1 − 2si + s2
i] +

1
4 ∑i< j

Qi, j [1 − si − sj + sisj] + CQUBO (F.3)

= −1
4∑i

si [Qi, i +Qi, i + ∑
i< j

Qi, j + ∑
i> j

Qi, j] +
1
4∑i< j

Qi, j si sj (F.4)

+ 1
2∑i

Qi, i +
1
4∑i< j

Qi, j + CQUBO

= −∑
i

si [
1
4 Qi,i +

1
4 ∑j

Qi, j]

´¹¹¹¸¹¹¹¶
hi

+ ∑
i< j

si sj
1
4 Qi, j

´¹¹¹¸¹¹¹¹¶
Ji, j

+ 1
2 ∑i

Qi, i +
1
4 ∑i< j

Qi,j + CQUBO

´¹¹¹¸¹¹¹¶
CIsing

(F.5)

= CIsing(S) (F.6)

CIsing(S) = −∑
i

hi si + ∑
i< j

Ji,j si sj + CIsing (F.7)

= −∑
i

hi (1 − 2zi) + ∑
i< j

Ji,j (1 − 2zi) (1 − 2zj) + CIsing (F.8)

= ∑
i< j

zi zj 4Ji, j

´¸¶
Qi, j , i≠ j

+∑
i

2hi zi − ∑
i< j

2Ji, j (zi + zj)

´¹¹¸¹¹¶
∑i zi [2hi−2∑j ≠ i ji, j] = ∑i z2

i Qi, i

(F.9)

= CQUBO(Z) (F.10)

130

G. Exact cover problems

G. Exact cover problems
The complete set of exact cover problem investigated in chapter 2, including their QUBO
formulations and energy spectra, can be found at https://jugit.fz-juelich.de/qip/
seqcs/-/tree/main/res/Exact-Cover. This set contains 48 unique problem instances in
total, which are equally distributed among the system sizes N ∈ {10, 12, 14, . . . , 20}. Each
exact cover matrix contain 64 columns and the solution binary strings contain approximately
N /3 set bits. In doing so, the problem Hamiltonians feature a low degeneracy of the nu-
merous energy levels. In section G.1 the generation process of the problem instances will be
explained.

G.1. Exact cover generator
All exact cover problem used throughout this thesis are generated randomly using an in-house
C++ program. Given the number of qubitsN , number of solution bits n, the minimal number
of matrix columns P and a seed to initialize the random number generator as user-inputs, the
program starts by generating the P bit binary strings (initialized to 0) corresponding to the
first n matrix rows (solution subsets Vi < n). This is done by iterating through each of the P
bits, selecting one of the n binary strings at random with equal probability, and setting its bit
to 1. Hence, for each matrix column, the set of solution rows contains only a single 1. Next, the
remaining N −n binary strings are generated by traversing through each bit and setting it to
1 with probability 1 /n. The latter is done to achieve a similar distribution of set bits among
all matrix rows. Note that this probability can also be changed via a user input, thus allowing
to modify the relative population of 1s among the non-solution binary strings compared to
the solution rows. Important to mention here is that a higher population typically causes a
higher interaction between the qubits, hence increasing the energy splitting, while a lower
population can result in a high degeneracy of the energy levels. In order to ensure that
the problem instances feature only a single solution string Zopt, the program checks all 2N

combinations of matrix rows and stores them into an array S. This process is performed
in parallel using OpenMP tasks [113] and a binary search tree in the matrix rows. Hence,
starting at a row p, the task checks if setting bit p to 1 would violate the exact cover. If that
is not the case, it spawns a new task to check row p+ 1, featuring the previous binary string
with bit p set to 1. In any case, a new task regarding the row p+1 with the previous bit string
unchanged is spawned. This continues until p = N and the solution strings are then appended
to S. Afterwards, the program resolves the unwanted solutions by appending additional
matrix columns and assigning set bits to the matrix rows as described above until S only
contains a single element (bit string with the first n bits set to 1). As a final step, the program
applies a random permutation to the matrix rows and returns the exact cover matrix, its
QUBO formulation, the solution string and the minimal energy. Note that the program code
can be found at https://gitlab-public.fz-juelich.de/qip/exact-cover-generator.

131

https://jugit.fz-juelich.de/qip/seqcs/-/tree/main/res/Exact-Cover
https://jugit.fz-juelich.de/qip/seqcs/-/tree/main/res/Exact-Cover
https://gitlab-public.fz-juelich.de/qip/exact-cover-generator

Appendix

H. 2-SAT problems
The complete set of 2-SAT problems studied in chapter 2 is provided at https://jugi
t.fz-juelich.de/qip/seqcs/-/tree/main/res/2-SAT, including the QUBO formula-
tions and energy spectra. The set contains 48 problems, with 8 instances per system size
N ∈ {10, 12, 14, . . . , 20}. These problems are provided by Mehta et al. and feature a high
degeneracy of the energy levels [73].

132

https://jugit.fz-juelich.de/qip/seqcs/-/tree/main/res/2-SAT
https://jugit.fz-juelich.de/qip/seqcs/-/tree/main/res/2-SAT

I. Distribution of interaction coefficients

I. Distribution of interaction coefficients

Figure I.9.: The plot shows the amplitudes of the interaction coefficients Kl (tD) as a function
of the evolution time tD. The data is obtained for the case of N = 4 qubits,
yielding 5 distinct Kl. Note that the individual extrema are located at tl =
k ⋅ π ± arctan

√
l

N−l with k ∈ N.

133

Appendix

J. Additional performance results
J.1. GQW results

Figure J.10.: The figure presents a three-dimensional plot of the data presented in Fig. 2.12a
in section 2.4.1, depicting the mean success probabilities Pgs across the sample
groups as a function of the system size N and the number of iterations p. Note
that only the best (highest Pgs) parameter sets obtained by the HGQW model
throughout 200 optimization runs of the Nelder-Mead optimizer with a maxi-
mum of 4000 evaluations based on Ar on the set of exact cover problems (see
appendix G) are shown. The two regions of operation are distinguished by
colour, with blue denoting parameter configurations at p ≥ N and red repre-
senting p < N .

134

J. Additional performance results

Figure J.11.: The figure presents a three-dimensional plot of the data presented in Fig. 2.13a
in section 2.4.2, depicting the mean success probabilities Pgs across the sample
groups as a function of the system size N and the number of iterations p. Note
that only the best (highest Pgs) parameter sets obtained by the HGQW-A
model throughout 200 optimization runs of the Nelder-Mead optimizer with
a maximum of 4000 evaluations based on Ar on the set of 2-SAT problems
(see appendix H) are shown. The two regions of operation are distinguished
by colour, with blue denoting parameter configurations at p ≥ 2N and red
representing p < 2N .

135

Appendix

(a) HGQW model

(b) HGQW-A model

Figure J.12.: The plots show the distributions of the success probability Pgs obtained by the
HGQW model (a) and the HGQW-A model (b) as a function of the total num-
ber of iterations p for the exact cover and 2-SAT problems given in appendix G
and H. The data is derived using a maximum of 4000 evaluations within 200
runs of the Nelder-Mead optimizer, focussing on an increase of Pgs. For each
problem instance and each circuit depth p, the best (highest Pgs) parameter
set is chosen, and the data is averaged within the sample groups (i.e. across
problems of the same size N). The individual sample groups are distinguished
by colour, and dashed lines indicate p = N and p = 2N , respectively.

136

J. Additional performance results

J.2. AQA results

(a) 2D plot

(b) 3D plot

Figure J.13.: The plots show the distribution of the mean success probabilities Pgs across
the sample groups of the exact cover problems (see appendix G) obtained by
the AQA as a function p and N . The data is derived using a maximum of 4000
evaluations within 200 runs of the Nelder-Mead optimizer, tuning the time step
∆t (see Eq. 2.32) to reduce the approximation ratio Ar (see Eq. 2.7). Note that
the D-Wave annealing schedule [80] is used.

137

Appendix

(a) 2D plot

(b) 3D plot

Figure J.14.: The plots show the distribution of the mean success probabilities Pgs across
the sample groups of the 2-SAT problems (see appendix H) obtained by the
AQA as a function p and N . The data is derived using a maximum of 4000
evaluations within 200 runs of the Nelder-Mead optimizer, tuning the time step
∆t (see Eq. 2.32) to reduce the approximation ratio Ar (see Eq. 2.7). Note that
the D-Wave annealing schedule [80] is used and that, except for the N = 10
qubit problems, Pgs saturates in p.

138

J. Additional performance results

J.3. QAOA results

(a) 2D plot

(b) 3D plot

Figure J.15.: The plots show the distribution of the mean success probabilities Pgs across
the sample groups of the exact cover problems (see appendix G) obtained by
the QAOA as a function p and N . The data is derived using a maximum of
4000 evaluations within 200 runs of the Nelder-Mead optimizer, tuning the
variational parameters β and γ to reduce the approximation ratio Ar (see
Eq. 2.7).

139

Appendix

(a) 2D plot

(b) 3D plot

Figure J.16.: The plots show the distribution of the mean success probabilities Pgs across
the sample groups of the 2-SAT problems (see appendix H) obtained by the
QAOA as a function p and N . The data is derived using a maximum of 4000
evaluations within 200 runs of the Nelder-Mead optimizer, tuning the varia-
tional parameters β and γ to reduce the approximation ratio Ar (see Eq. 2.7).

140

Acknowledgments

An dieser Stelle möchte ich vor allem meiner Freundin Sarah-Marie Grabeck
danken. Seit nun fast fünf Jahren bist du an meiner Seite, unterstützt mich bei
all meinen verrückten Ideen, bist für mich da, wenn mir manchmal alles zu viel
wird, bist meine beste Freundin, und zeigst mir, dass es auch noch ein Leben
außerhalb der Physik gibt. Ich weiß, das vergangene Jahr war anstrengend für
uns beide, aber ich freue mich darauf, endlich mit dir zusammenzuziehen und
mein weiteres Leben mit dir zu verbringen.

Ebenfalls möchte ich vielmals meinen Eltern danken, die mich stets ermutigt und
unterstützt haben in all meinen Vorhaben. Ich weiß, es war nicht immer einfach
mit mir, aber ohne euch wäre ich jetzt nicht da, wo ich heute bin.

Auch möchte ich den Vorzeichenzauberern für ein unvergessliches Studium danken.
Ohne euch hätten die letzten fünf Jahre mit Sicherheit viel weniger Spaß gemacht
und ich werde die gemeinsame Zeit mit euch vermissen. Ich hoffe, dass wir weiter-
hin in Kontakt bleiben und wünsche euch allen viel Erfolg bei euren Promotionen.

Additionally, I would like to express my sincere gratitude towards Dennis Willsch
for an excellent supervision. I really appreciate your support and the discussions
we had. Many thanks go to Kristel Michielsen for giving me the opportunity to
do my master thesis as well as my PhD in the group. Finally, I would like to
thank the whole QIP group for the warm welcome, and I am looking forward to
spending the next years with you guys.

141

Zentrales Prüfungsamt/Central Examination Office

Eidesstattliche Versicherung
Statutory Declaration in Lieu of an Oath

 Schulz, Sebastian 377242
__ ___

Name, Vorname/Last Name, First Name Matrikelnummer (freiwillige Angabe)
Matriculation No. (optional)

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/

Masterarbeit* mit dem Titel
I hereby declare in lieu of an oath that I have completed the present paper/Bachelor thesis/Master thesis* entitled

GPU-accelerated simulation of guided quantum walks
__

__

selbstständig und ohne unzulässige fremde Hilfe (insbes. akademisches Ghostwriting)

erbracht habe. Ich habe keine anderen als die angegebenen Quellen und Hilfsmittel benutzt.

Für den Fall, dass die Arbeit zusätzlich auf einem Datenträger eingereicht wird, erkläre ich,

dass die schriftliche und die elektronische Form vollständig übereinstimmen. Die Arbeit hat in

gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.
independently and without illegitimate assistance from third parties (such as academic ghostwriters). I have used no other than

the specified sources and aids. In case that the thesis is additionally submitted in an electronic format, I declare that the written

and electronic versions are fully identical. The thesis has not been submitted to any examination body in this, or similar, form.

___________________________ ___________________________

Ort, Datum/City, Date Unterschrift/Signature

 *Nichtzutreffendes bitte streichen

*Please delete as appropriate

Belehrung:
Official Notification:

§ 156 StGB: Falsche Versicherung an Eides Statt

Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche Versicherung falsch abgibt

oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Freiheitsstrafe bis zu drei Jahren oder mit Geldstrafe

bestraft.
Para. 156 StGB (German Criminal Code): False Statutory Declarations

Whoever before a public authority competent to administer statutory declarations falsely makes such a declaration or falsely testifies while

referring to such a declaration shall be liable to imprisonment not exceeding three years or a fine.
§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt

(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen worden ist, so tritt

Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.
(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des § 158 Abs. 2 und

3 gelten entsprechend.
Para. 161 StGB (German Criminal Code): False Statutory Declarations Due to Negligence

(1) If a person commits one of the offences listed in sections 154 through 156 negligently the penalty shall be imprisonment not exceeding

one year or a fine.
(2) The offender shall be exempt from liability if he or she corrects their false testimony in time. The provisions of section 158 (2) and (3)

shall apply accordingly.
Die vorstehende Belehrung habe ich zur Kenntnis genommen:
I have read and understood the above official notification:

___________________________ ___________________________

Ort, Datum/City, Date Unterschrift/Signature

	Introduction
	Simulation of ideal quantum computing
	Ideal quantum computing
	Quantum states
	Quantum gates
	Quantum measurements

	Quantum circuit simulation
	Simulation techniques
	Programming framework
	CUDA platform
	Hardware limitations

	Implementation of SEQCS
	Multi-node computation
	Single-Node computation
	Gate implementations

	Benchmarks
	MPI-communication scheme
	Shared memory
	Combined gate execution
	Single qubit diagonal gates
	Single qubit non-diagonal gates

	Quantum algorithms

	Quantum optimization algorithms
	Combinatorial optimization problems
	Exact-Cover problems
	2-SAT problems

	Quantum optimization algorithms
	Quantum annealing
	Quantum approximate optimization algorithm
	Approximate quantum annealing
	Quantum walk

	Guided quantum walk
	Movement on directed graphs
	Controlling the walker's movement
	Heuristic model
	Dynamics of the HGQW model
	Adjustments to the HGQW model

	Performance analysis
	Performance of the HGQW model
	Performance of the HGQW-A model
	Comparison of the GQW, the AQA and the QAOA
	Performance on exact cover problems
	Performance on 2-SAT problems

	Hybrid algorithms

	Conclusion
	Bibliography
	Appendix
	Implemented gate operations
	Quantum circuits
	Quantum approximate optimization algorithm
	Quantum Fourier transformation
	Quantum adder

	GPU architecture
	SEQCS program code
	Algorithms
	Insertion of qubit swaps
	MPI communication scheme
	Creation of gate-clusters
	Formation of gate-groups
	Out-of-order gate execution

	Conversion between Ising and QUBO formulation
	Exact cover problems
	Exact cover generator

	2-SAT problems
	Distribution of interaction coefficients
	Additional performance results
	GQW results
	AQA results
	QAOA results

	Acknowledgments

