001     916761
005     20231027114350.0
024 7 _ |a 10.1016/j.ultramic.2022.113663
|2 doi
024 7 _ |a 0304-3991
|2 ISSN
024 7 _ |a 1879-2723
|2 ISSN
024 7 _ |a 2128/33366
|2 Handle
024 7 _ |a 36566529
|2 pmid
024 7 _ |a WOS:000912355300001
|2 WOS
037 _ _ |a FZJ-2023-00085
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Bertoni, Giovanni
|0 0000-0001-6424-9102
|b 0
|e Corresponding author
245 _ _ |a Near-real-time diagnosis of electron optical phase aberrations in scanning transmission electron microscopy using an artificial neural network
260 _ _ |a Amsterdam
|c 2023
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1672832767_11195
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The key to optimizing spatial resolution in a state-of-the-art scanning transmission electron microscope is the ability to measure and correct for electron optical aberrations of the probe-forming lenses precisely. Several diagnostic methods for aberration measurement and correction have been proposed, albeit often at the cost of relatively long acquisition times. Here, we illustrate how artificial intelligence can be used to provide near-real-time diagnosis of aberrations from individual Ronchigrams. The demonstrated speed of aberration measurement is important because microscope conditions can change rapidly. It is also important for the operation of MEMS-based hardware correction elements, which have less intrinsic stability than conventional electromagnetic lenses.
536 _ _ |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)
|0 G:(DE-HGF)POF4-5351
|c POF4-535
|f POF IV
|x 0
536 _ _ |a ESTEEM3 - Enabling Science and Technology through European Electron Microscopy (823717)
|0 G:(EU-Grant)823717
|c 823717
|f H2020-INFRAIA-2018-1
|x 1
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Rotunno, Enzo
|0 P:(DE-HGF)0
|b 1
|e Corresponding author
700 1 _ |a Marsmans, Daan
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Tiemeijer, Peter
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Tavabi, Amir H.
|0 P:(DE-Juel1)157886
|b 4
|u fzj
700 1 _ |a Dunin-Borkowski, Rafal E.
|0 P:(DE-Juel1)144121
|b 5
|u fzj
700 1 _ |a Grillo, Vincenzo
|0 P:(DE-HGF)0
|b 6
773 _ _ |a 10.1016/j.ultramic.2022.113663
|g Vol. 245, p. 113663 -
|0 PERI:(DE-600)1479043-9
|p 113663 -
|t Ultramicroscopy
|v 245
|y 2023
|x 0304-3991
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/916761/files/1-s2.0-S0304399122001826-main.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/916761/files/ULTRAM-D-22-00070_R1-Copy.pdf
909 C O |o oai:juser.fz-juelich.de:916761
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 0000-0001-6424-9102
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)157886
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)144121
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5351
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ULTRAMICROSCOPY : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-21
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-21
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-21
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21