Hauptseite > Publikationsdatenbank > Near-real-time diagnosis of electron optical phase aberrations in scanning transmission electron microscopy using an artificial neural network > print |
001 | 916761 | ||
005 | 20231027114350.0 | ||
024 | 7 | _ | |a 10.1016/j.ultramic.2022.113663 |2 doi |
024 | 7 | _ | |a 0304-3991 |2 ISSN |
024 | 7 | _ | |a 1879-2723 |2 ISSN |
024 | 7 | _ | |a 2128/33366 |2 Handle |
024 | 7 | _ | |a 36566529 |2 pmid |
024 | 7 | _ | |a WOS:000912355300001 |2 WOS |
037 | _ | _ | |a FZJ-2023-00085 |
041 | _ | _ | |a English |
082 | _ | _ | |a 570 |
100 | 1 | _ | |a Bertoni, Giovanni |0 0000-0001-6424-9102 |b 0 |e Corresponding author |
245 | _ | _ | |a Near-real-time diagnosis of electron optical phase aberrations in scanning transmission electron microscopy using an artificial neural network |
260 | _ | _ | |a Amsterdam |c 2023 |b Elsevier Science |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1672832767_11195 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The key to optimizing spatial resolution in a state-of-the-art scanning transmission electron microscope is the ability to measure and correct for electron optical aberrations of the probe-forming lenses precisely. Several diagnostic methods for aberration measurement and correction have been proposed, albeit often at the cost of relatively long acquisition times. Here, we illustrate how artificial intelligence can be used to provide near-real-time diagnosis of aberrations from individual Ronchigrams. The demonstrated speed of aberration measurement is important because microscope conditions can change rapidly. It is also important for the operation of MEMS-based hardware correction elements, which have less intrinsic stability than conventional electromagnetic lenses. |
536 | _ | _ | |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535) |0 G:(DE-HGF)POF4-5351 |c POF4-535 |f POF IV |x 0 |
536 | _ | _ | |a ESTEEM3 - Enabling Science and Technology through European Electron Microscopy (823717) |0 G:(EU-Grant)823717 |c 823717 |f H2020-INFRAIA-2018-1 |x 1 |
588 | _ | _ | |a Dataset connected to DataCite |
700 | 1 | _ | |a Rotunno, Enzo |0 P:(DE-HGF)0 |b 1 |e Corresponding author |
700 | 1 | _ | |a Marsmans, Daan |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Tiemeijer, Peter |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Tavabi, Amir H. |0 P:(DE-Juel1)157886 |b 4 |u fzj |
700 | 1 | _ | |a Dunin-Borkowski, Rafal E. |0 P:(DE-Juel1)144121 |b 5 |u fzj |
700 | 1 | _ | |a Grillo, Vincenzo |0 P:(DE-HGF)0 |b 6 |
773 | _ | _ | |a 10.1016/j.ultramic.2022.113663 |g Vol. 245, p. 113663 - |0 PERI:(DE-600)1479043-9 |p 113663 - |t Ultramicroscopy |v 245 |y 2023 |x 0304-3991 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/916761/files/1-s2.0-S0304399122001826-main.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/916761/files/ULTRAM-D-22-00070_R1-Copy.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:916761 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 0000-0001-6424-9102 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)157886 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)144121 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Materials Systems Engineering |1 G:(DE-HGF)POF4-530 |0 G:(DE-HGF)POF4-535 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Materials Information Discovery |9 G:(DE-HGF)POF4-5351 |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2023-10-21 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ULTRAMICROSCOPY : 2022 |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-10-21 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2023-10-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-10-21 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2023-10-21 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ER-C-1-20170209 |k ER-C-1 |l Physik Nanoskaliger Systeme |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|