

APPLICATIONS ON QUANTUM ANNEALERS AT FZJ

JUNIQ: Jülich Unified INfrastructure for Quantum Computing

INQA CONFERENCE 2022 I DR. DENNIS WILLSCH

CONTENTS

JÜLICH JÜLICH **SUPERCOMPUTING** CENTRE

- 1. Airline Scheduling
- 2. Traveling Salesman
- 3. Garden Optimization
- 4. 2-Satisfiability
- 5. Quantum Support Vector Machines
- 6. Quantum Boltzmann Machines

Prof. Dr. Kristel Michielsen

De Raedt

Dr. Dennis Willsch

Dr. Madita Willsch

Vrinda Mehta

Carlos Gonzalez Calaza

Manpreet Jattana

Tamás Nemes

Cameron **Perot**

Dr. Fengping Jin

TAIL ASSIGNMENT PROBLEM

Application: Airline scheduling

Find optimal flight schedule such that each flight is covered exactly once

TAIL ASSIGNMENT PROBLEM

Problem specification

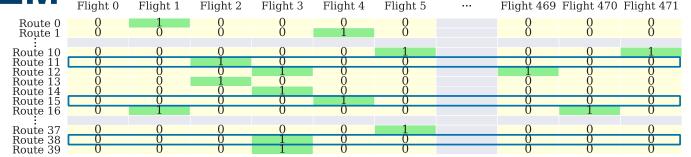
Find optimal flight schedule such that each flight is covered exactly once

	Flight 0	Flight 1	Flight 2	Flight 3	Flight 4	Flight 5	 Flight 469	Flight 470	Flight 471
Route 0	0	1	0	0	0	0	0	0	0
Route 1	U	U	U	U	1	U	U	U	U
Route 10	0	0	0	0	0	1	0	0	1
Route 11	0	0	1	0	0	0	0	0	0
Route 12	0	0	Q	1	0	0	1	0	0
Route 13	Q	0	1	Q	Q	Q	Q	0	0
Route 14	0	0	0	1	0	0	0	0	0
Route 15	0	0	0	0	1	0	0	0	0
Route 16	0	1	0	0	0	0	0	1	0
;									
Route 37	0	0	0	0	0	1	0	0	0
Route 38	0	0	0	1	0	0	0	0	0
Route 39	0	0	0	1	0	0	0	0	0

Willsch et al. (2022) QINP 21, 141 arXiv:2105.02208

Mathematical formulation

➤ Linear assignment problem



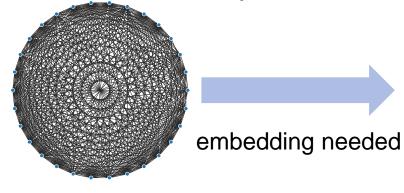
minimize $\vec{f}^T \vec{x}$ encodes cost of assigning airplanes to routes subject to $A\vec{x} = \vec{b}$ exact cover problem: each flight covered once

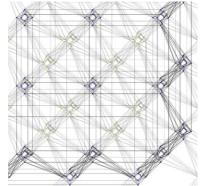
QUBO \leftrightarrow Ising: $x_i = (1 + s_i)/2$

➤ Reformulation as Ising problem

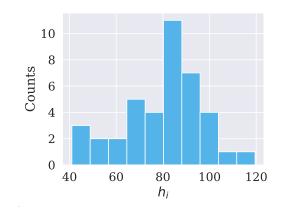
$$\min_{x_i=0,1} \left(\left(A\vec{x} - \vec{b} \right)^2 + \lambda \vec{f}^T \vec{x} \right) = \min_{s_i=\pm 1} \left(\sum_i h_i s_i + \sum_{i < j} J_{ij} s_i s_j + \text{const} \right)$$

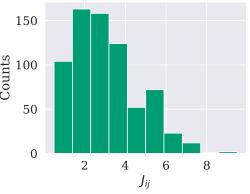
>25 - 40 qubit almost fully-connected ("clique") Ising problems





Dr. Dennis Willsch

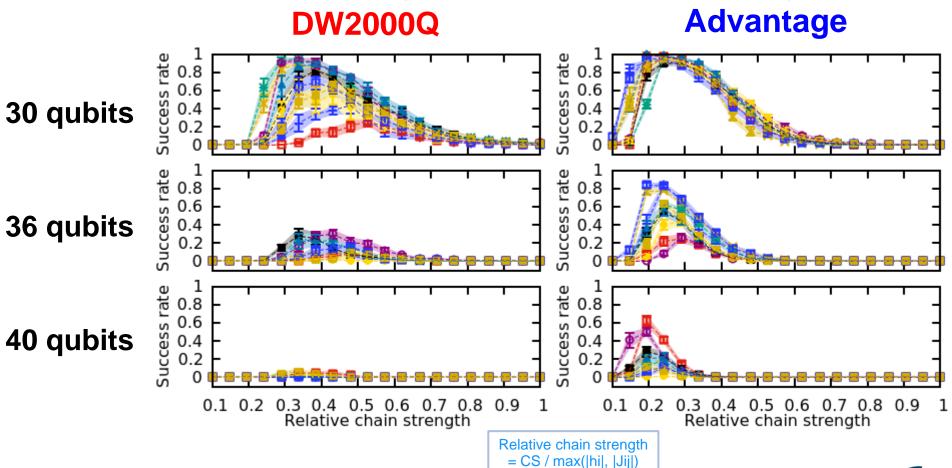


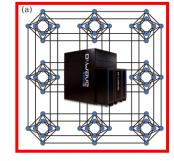


TAIL ASSIGNMENT: RESULTS

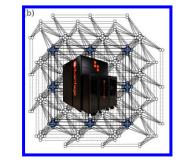
30 - 40 qubit problems (90% nonzero couplers)

Scan of 10 different embeddings and 20 relative chain strengths:





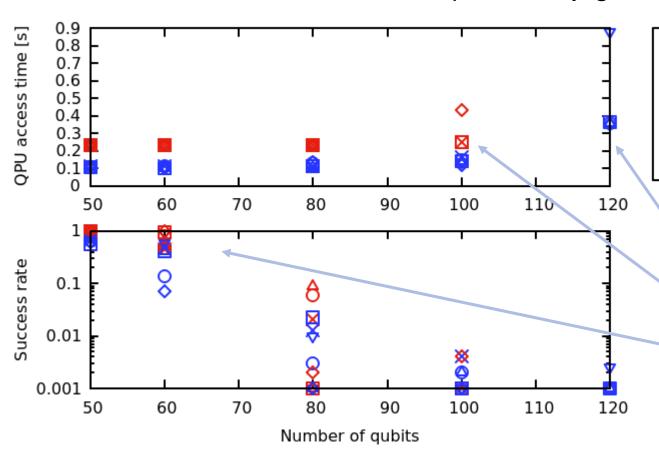
VS.

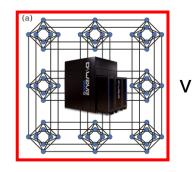


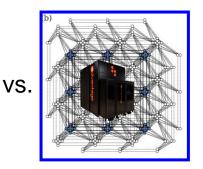
TAIL ASSIGNMENT: RESULTS

50-120 qubits: larger but sparser problems (20% nonzero couplers)

The fastest successful runs that reproducibly gave a solution:







Observations:

- Advantage solves larger problems
- Advantage solves problems faster
- If DW2000Q can solve a problem, the success rate is sometimes higher

Chimera

Pegasus

Instance 0

Instance 1

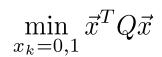
Instance 2

Instance 3

Instance 4 Instance 5

TRAVELING SALESMAN PROBLEM

QUBO formulation



Cost to travel from city i to city j

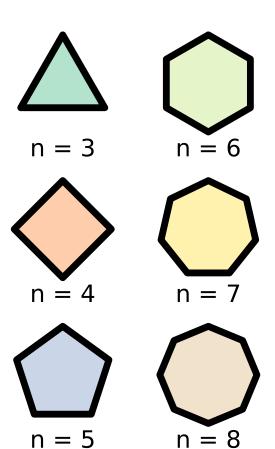
$$\min_{x_{it}=0,1} \left\{ \lambda \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \sum_{t=0}^{n-1} c_{ij} x_{it} x_{j(t+1)} \right.$$
 time steps
$$\begin{array}{c} \text{cities} \\ \downarrow \quad \textbf{0} \quad \textbf{1} \quad \textbf{2} \quad \textbf{3} \\ \textbf{A} \quad \textbf{1} \quad \textbf{0} \quad \textbf{0} \quad \textbf{0} \\ \textbf{B} \quad \textbf{0} \quad \textbf{0} \quad \textbf{1} \\ \textbf{C} \quad \textbf{0} \quad \textbf{1} \quad \textbf{0} \quad \textbf{0} \\ \textbf{D} \quad \textbf{0} \quad \textbf{0} \quad \textbf{1} \quad \textbf{0} \end{array} \right. + \sum_{t=0}^{n-1} \left(\sum_{t=0}^{n-1} x_{it} - 1 \right)^2 \right\}$$

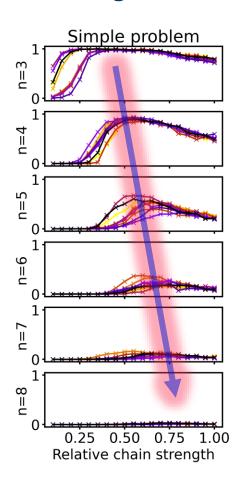
- Assign cities & times to qubits:
 - Qubit $x_{it}=1$ means the traveler is at city i at time t
 - Count the cost c_{ij} if the traveler goes from i to j at some time step
 - ullet Traveler must pass city i only once
 - Traveler can only be at one city at each time step
- Not the DFJ formulation: linear but exp. many inequality constraints
- Could simplify by fixing starting point \rightarrow Number of qubits $(n-1)^2$

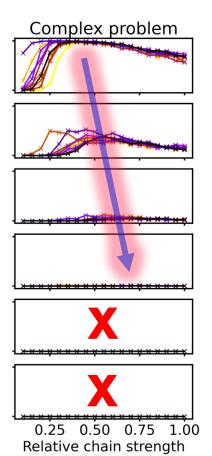
10³

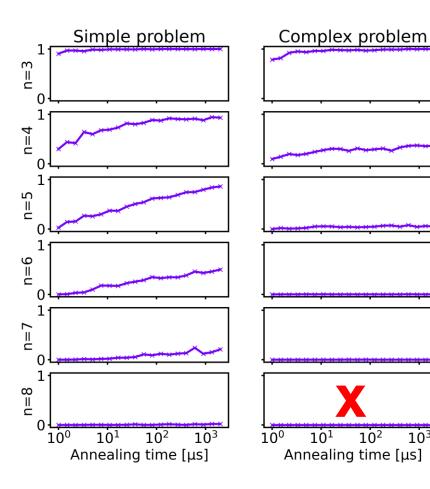
TRAVELING SALESMAN PROBLEM

Scaling of chain strength and annealing time



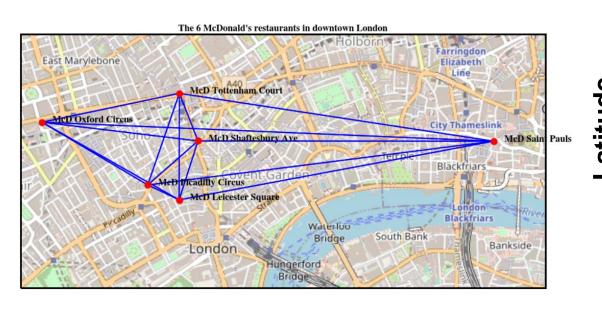


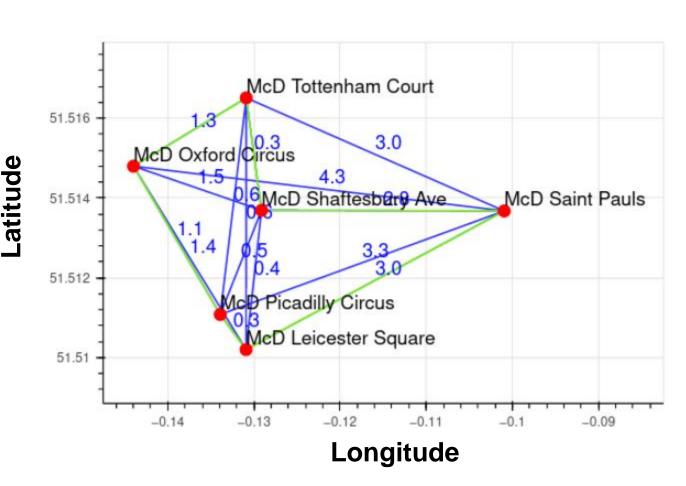




TRAVELING SALESMAN PROBLEM

The 6 McDonald's restaurants in downtown London



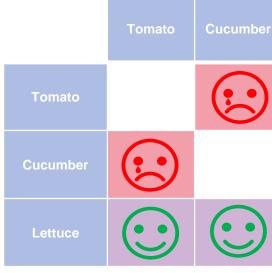


VEGETABLE GARDEN OPTIMIZATION

Gonzalez Calaza et al. (2021) QINP **20**, 305 arXiv:2101.10827 https://jugit.fz-juelich.de/qip/ garden-optimization-problem

Overview

➤ Problem: Companion planting in polyculture vegetable gardens



Lettuce



QUANTUM USER FACILITY

Task: Find an optimal placement of plants in the garden considering the characteristics of their nearest neighbours

VEGETABLE GARDEN OPTIMIZATION

Gonzalez Calaza et al. (2021) QINP **20**, 305 arXiv:2101.10827 https://jugit.fz-juelich.de/qip/garden-optimization-problem

QUBO formulation

$$\min_{x_k=0,1} \vec{x}^T Q \vec{x}$$

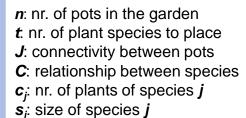
$$\min_{x_{ij}=0,1} \left\{ \sum_{i,i'=0}^{n-1} J_{ii'} \left(1 + \sum_{j,j'=0}^{t-1} x_{ij} C_{jj'} x_{i'j'} \right) \right\}$$

$$+\lambda_1 \sum_{i=0}^{n-1} \left(1 - \sum_{j=0}^{t-1} x_{ij}\right)^2$$

$$+\lambda_2 \sum_{j=0}^{t-1} \left(c_j - \sum_{i=0}^{n-1} x_{ij} \right)^2$$

$$+\lambda_3 \sum_{i=0}^{n-1} \sum_{j=0}^{t-1} (i\%2 - s_j)^2 x_{ij}$$

- Assign plants to pots in the garden:
 - Qubit $x_{ij} = 1$ means species j is placed in pot i
 - All plants should have a good relationship with their neighbors
 - Use all available plants and pots
 - Big plants should not shadow small ones



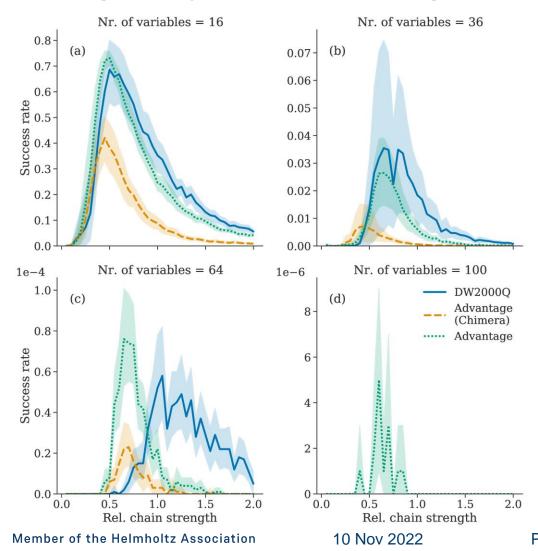
VEGETABLE GARDEN OPTIMIZATION

Happy gardening!

Gonzalez Calaza et al. (2021)
QINP **20**, 305
arXiv:2101.10827
https://jugit.fz-juelich.de/qip/garden-optimization-problem

garden-optin

Finding the optimal chain strength: Results



Experiment:

- 4 problems of increasing size
- Success = constraints weren't violated
- 10 different embeddings for each system
- Scanned 40 different values for:
 Rel. chain strength = CS / max(|ai|,|bij|)

Conclusions:

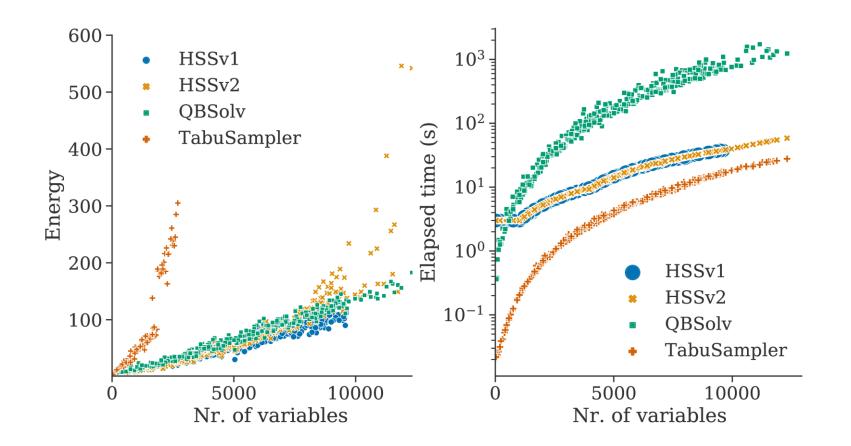
- Trying several embeddings is very important
- Chain strength heavily affects success rate
- Longer chains require higher chain strengths

CLASSICAL AND HYBRID SOLVERS

arXiv:2101.10827 https://jugit.fz-juelich.de/qip/ garden-optimization-problem

Gonzalez Calaza et al. (2021) QINP **20**, 305

Comparing energies and run times



Results:

- HSSv1: best but only up to 10k vars.
- HSSv2: same as v1 up to 2k vars., worse later.
- QBSolv: good but very slow.
- <u>TabuSampler</u>: returns unusable results extremely fast.

Conclusion:

 Hybrid solvers outperform classical solvers.

2-SATISFIABILITY

Overview

➤ Mathematical formulation

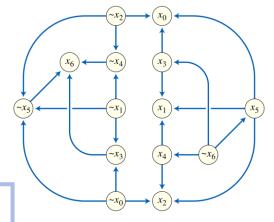
$$F = (L_{1,1} \vee L_{1,2}) \wedge (L_{2,1} \vee L_{2,2}) \wedge \dots \wedge (L_{M,1} \vee L_{M,2})$$

where $L_{j,k} = x_i$ or $\overline{x_i}$ with $x_i = 0, 1$

➤ Reformulation as Ising Problem

$$H_{2SAT} = \sum_{\alpha=1}^{M} h_{2SAT}(\epsilon_{\alpha,1} s_{i[\alpha,1]}, \epsilon_{\alpha,2} s_{i[\alpha,2]})$$

- **Example for clause** $x_1 \vee x_2 : h_{2SAT} = s_1 s_2 (s_1 + s_2) + 1$
- ➤ "Hard 2-SAT problems": The purpose is benchmarking
 - > Chosen to be "hard" for quantum annealers (not for digital computers)



Mehta et al., PRA 105, 062406 (2022) Mehta et al., PRA **104**, 032421 (2021)

find assignment to x_i that makes F true

Ising:
$$\min_{s_i = \pm 1} \left(\sum_i h_i s_i + \sum_{i < j} J_{ij} s_i s_j \right)$$

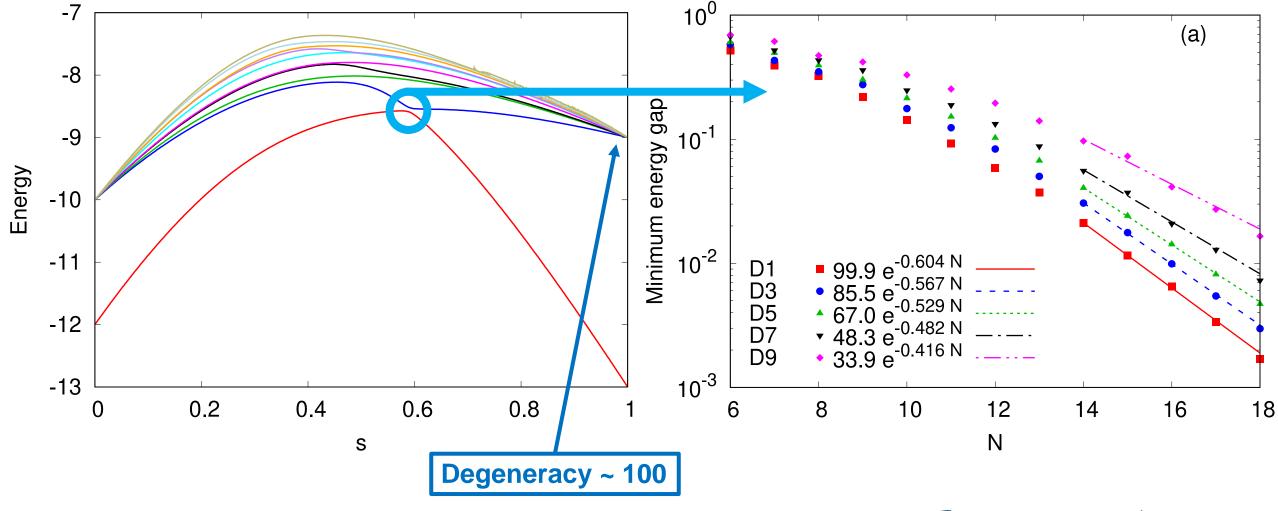
$$x_i = 0 \Leftrightarrow s_i = -1$$
 $\epsilon_{\alpha} = 1 \text{ for } x_i$
 $x_i = 1 \Leftrightarrow s_i = +1$ $\epsilon_{\alpha} = -1 \text{ for } \overline{x_i}$

$$\epsilon_{\alpha} = 1 \text{ for } x_i$$

$$\epsilon_{\alpha} = -1 \text{ for } \overline{x_i}$$

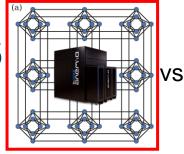
2-SATISFIABILITY

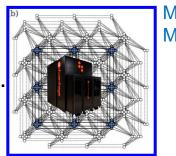
Properties: unique ground state, highly degenerate first excited level, small gaps



2-SATISFIABILITY: RESULTS

Success rate for 1000 2-SAT problems



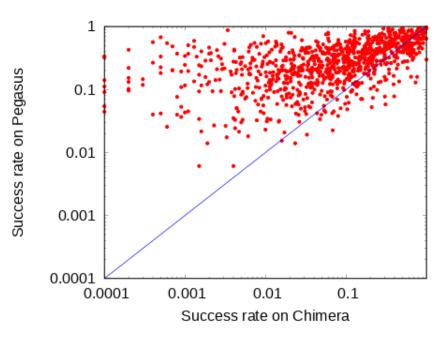


Mehta et al., PRA **105**, 062406 (2022) Mehta et al., PRA **104**, 032421 (2021)

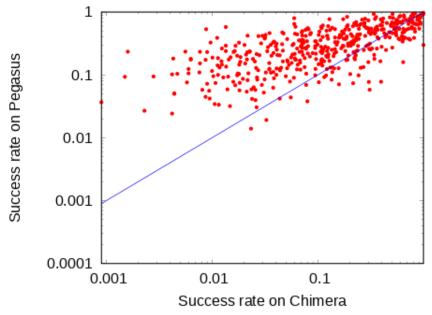
> Direct mapping:

- ~50% on DW2000Q
- ~90% on Advantage
- Advantage performs better for a majority of the problems, especially the difficult problems

All problems



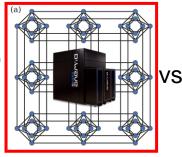
Problems with direct mapping

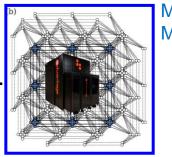


- Largest enhancement for cases that require embedding only on Chimera
 - → Improvement due to increased connectivity

2-SATISFIABILITY: RESULTS

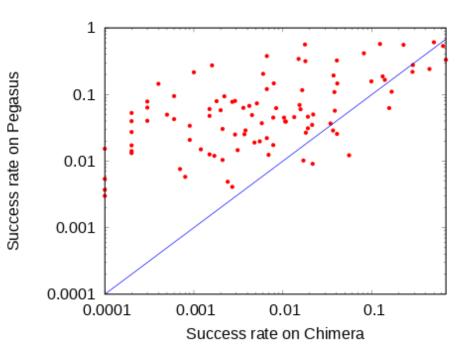
Success rate for 2 particular 2-SAT problems



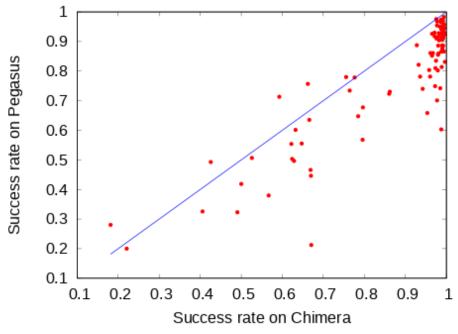


Mehta et al., PRA **105**, 062406 (2022) Mehta et al., PRA **104**, 032421 (2021)

Hard Problem



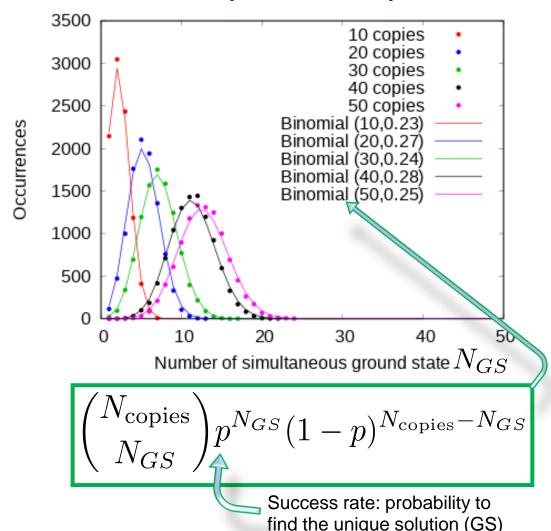
Easy problem

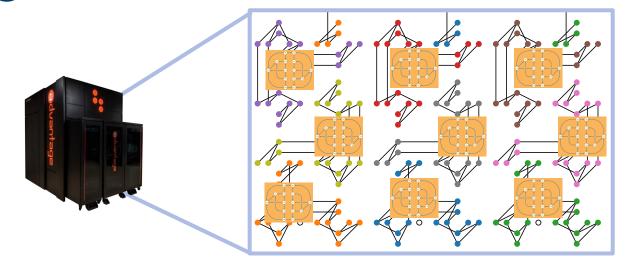


- For a hard problem,
 Advantage performs
 better
- However, for an easy problem, DW2000Q performs better

2-SATISFIABILITY: RESULTS

Embed the same problem multiple times





- The occurrence of optimal solutions follows a binomial distribution
- Parts of the solver corresponding to each copy work almost independently
- Note that in no run could all ground states be found simultaneously

Willsch et al., CPC **248**, 107006 (2021) Delilbasic et al., IGARSS 2021, 2608 (2021) Cavallaro et al., IGARSS 2020, 1973 (2020)

From classical SVM to quantum SVM

- > An SVM is a supervised machine-learning method for binary classification
- > Given a training set

$$D = \{(\mathbf{d}_n, t_n) : n = 0, \dots, N - 1\}$$

Feature vector

an SVM is trained by solving the Quadratic Programming problem

minimize
$$E(\{\alpha_n\}) = \frac{1}{2} \sum_{nm} \alpha_n \alpha_m t_n t_m k(\mathbf{d}_n, \mathbf{d}_m) - \sum_n \alpha_n \mathbf{d}_n \mathbf{d}_$$

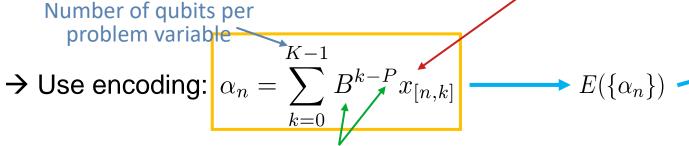
subject to
$$0 \le \alpha_n \le C$$
 and $\sum \alpha_n t_n = 0$

$$\sum \alpha_n t_n = 0$$

Continuous problem variables

Kernel function (nonlinear SVM)

> QUBO problems are also quadratic, but for binary variables

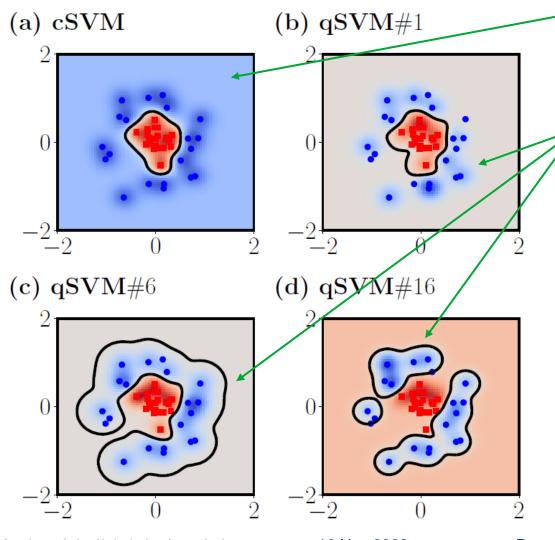


Base & Exponent

$$\min_{x_i=0,1} \left(\sum_{i,j} x_i Q_{ij} x_j \right)$$

QUANTUM SUPPORT VECTOR MACHINES

Results



Classical SVM (cSVM) yields the global minimum, but only for the training data

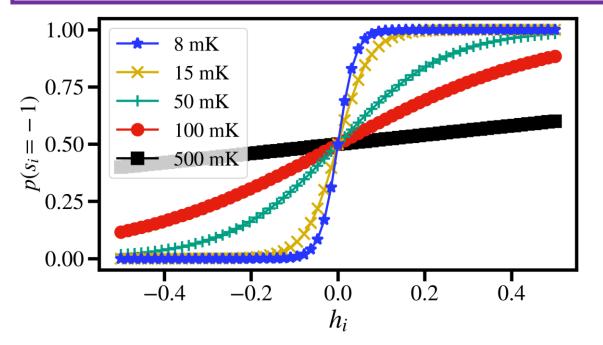
Quantum SVM (qSVM) yields additional low-energy classifiers from ensemble of solutions

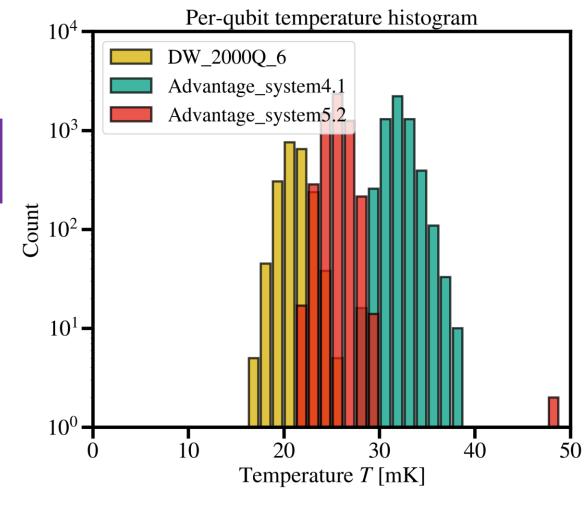
Combination of multiple low-energy qSVM classifiers generalizes better to unseen data

Experiment #1: Effective per-qubit temperature distribution

$$H(s) = \frac{A(s)}{2} \left(\sum_{i} \sigma_{i}^{x} \right) + \frac{B(s)}{2} \left(\sum_{i} h_{i} \sigma_{i}^{z} + \sum_{i < j} J_{i} \sigma_{i}^{z} \sigma_{j}^{z} \right)$$

$$p(s_i = \pm 1) = \langle s_i | \frac{1}{Z} e^{-\beta H(1)} | s_i \rangle = \frac{1}{2} \left(1 + \tanh \left(-\frac{B(1)h_i}{2k_B T} s_i \right) \right)$$

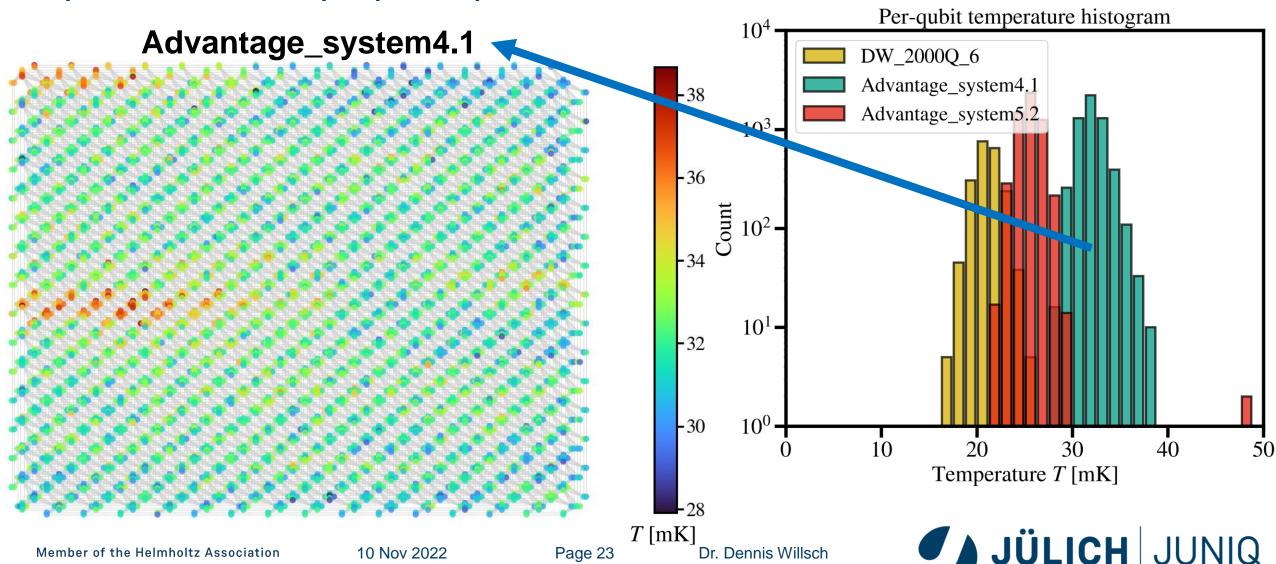




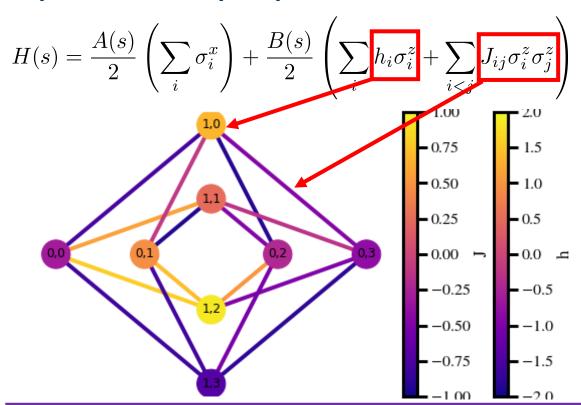
Forschungszentrum

QUANTUM BOLTZMANN MACHINES

Experiment #1: Effective per-qubit temperature distribution

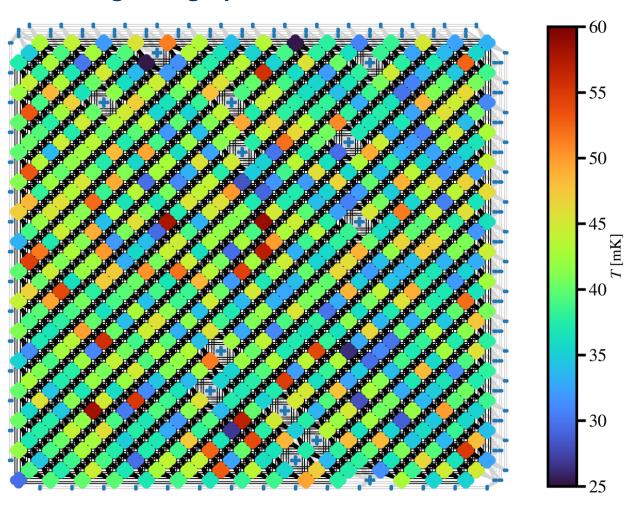


Experiment #2: 8-qubit problem on each Chimera cell of the Pegasus graph

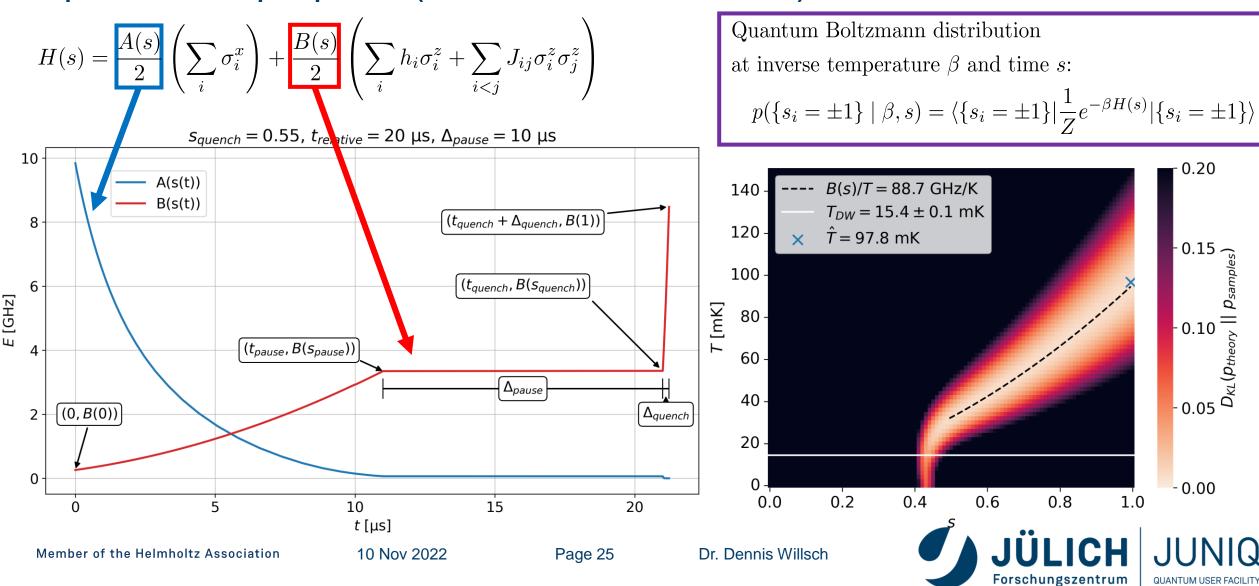


Fit Boltzmann distribution to observed samples at s=1 to infer $\beta=1/k_BT$:

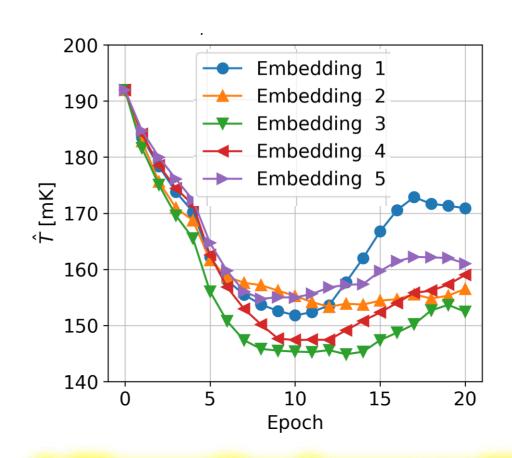
$$p({s_i = \pm 1} \mid \beta, s) = \langle {s_i = \pm 1} \mid \frac{1}{Z} e^{-\beta H(s)} \mid {s_i = \pm 1} \rangle$$

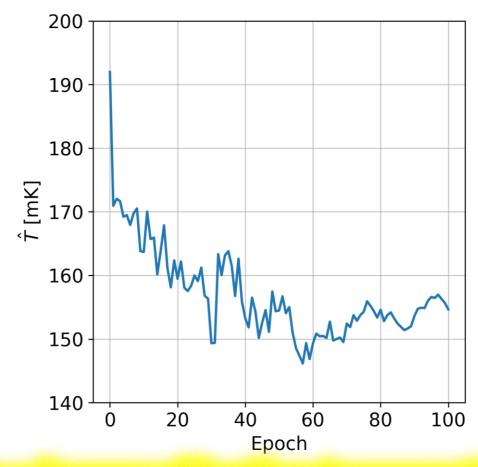


Experiment #3: 12-qubit problem (also for intermediate times s != 1)



Experiment #4: 96-qubit problem (~400 physical qubits, application in quantitative finance)





→ Observation: Larger problems ~ larger effective temperature

SUMMARY

1. Airline Scheduling

2. Traveling Salesman

3. Garden Optimization

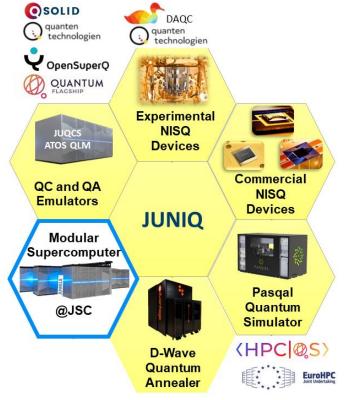
4. 2-Satisfiability

5. QSVM

6. QBM

optimization problem with constraints [increasing complexity]

constraints only optimization only [basically] sampling problem



JUNIQ Rolling Call:

or search for "FZJ JUNIQ ACCESS"

