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to as ‘MetaPhenomics’, with a variety of previously 
published and unpublished dose-response curves of 
the effect of light intensity on 25 plant traits. Further-
more, we discuss the need and difficulties to expand 
this approach to the transcriptomics and metabo-
lomics level, and show how the generalized dose-
response curves can be used to improve simulation 
models as well as the communication between model-
ers and experimental plant biologists.

Keywords  Abiotic environment · Dose-response 
curve · Light intensity · Modeling · Normalization

Introduction

‘Unlike most animals, plants are sessile organisms 
and therefore must have the ability to cope with 
wide fluctuations in their physical environment’. 

Abstract  Thousands of scientific papers have 
described how plants responded to different levels 
of a given environmental factor, for a wide variety 
of physiological processes and morphological, ana-
tomical or chemical characteristics. There is a clear 
need to summarize this information in a structured 
and comparable way through meta-analysis. This 
paper describes how to use relative trait responses 
from many independent experiments to create gen-
eralized dose-response curves. By applying the same 
methodology to a wide range of plant traits, varying 
from the molecular to the whole plant level, we can 
achieve an unprecedented view on the many ways 
that plants are affected by and acclimate to their envi-
ronment. We illustrate this approach, which we refer 
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Words to this effect are popular starting sentences 
in scientific papers (e.g. Queitsch et al. 2000; Zhang 
and Friml 2020). To fully oversee its consequences, 
this general plant characteristic has to be coupled to 
another essential aspect, in which plants and animals 
also differ. Where body size of animals of a given 
age is often only marginally dependent on the exter-
nal environment, variation is far more pronounced 
for plants: depending on environmental conditions, 
plant size can vary tremendously (Tardieu et  al. 
2017). In controlled experiments, the variation in 
biomass among equally-aged plants of different 
treatments may well be 3–10 fold, and sometimes 
differ more than 30-fold (Pons and Poorter 2014). 
In nature, over 100-fold differences in biomass can 
occur for even-aged plants, depending on site con-
ditions (Portsmuth et  al. 2005 vs. Ovington 1957; 
Lu et al. 2017 and Forrester et al. 2017). Although 
less variable than plant size, strong plasticity is also 
found for a diverse range of traits related to plant 
morphology, chemistry and physiology (Valladares 
and Niinemets 2008). To a certain extent these dif-
ferences are merely physiological consequences 
of the environmental conditions: if light levels are 
low, the photosynthetic rates are necessarily also 
low. However, plants can also actively (re)program 
their development to acclimate to different levels of 
an environmental variable, by adjusting traits in a 
way that improves their performance under specific 
conditions as compared to when they had not repro-
grammed themselves (Nicotra et al. 2010).

Analyzing the responses of plants to the range of 
environmental factors they experience is one of the main 
fields of focus of plant ecophysiology (Lambers and 
Oliveira 2019). An often-used experimental approach is 
to challenge seedlings or saplings for a period of time 
with two or more levels of a specific abiotic factor, such 
as light, water or nutrients. Subsequent plant measure-
ments can have a focus on variables related to morphol-
ogy and allocation, such as leaf size or thickness, chemi-
cal traits such as nitrogen or phosphorus concentration, 
physiological traits such as photosynthesis and transpi-
ration, or variables describing growth and development, 
such as biomass or flowering time (Perez-Harguindeguy 
et al. 2016; Freschet et al. 2021). Over the last 30 years 
this approach has been extended by analyzing specific 
cellular messengers such as hormone or mRNA levels, 
and broad profiling of the transcriptome, proteome and 
metabolome (Sahoo et al. 2020).

Hundreds to thousands of such experimental stud-
ies on the environmental effects on plant growth and 
trait acclimation appear each year in the scientific 
literature, for a wide range of different species. The 
challenge for the scientific community is how to fruit-
fully handle and incorporate this enormous source 
of scientific data. Textbooks such as Lambers and 
Oliveira (2019) and Nobel (2020) or narrative reviews 
can help to structure this information to some extent. 
However, they will necessarily remain the author’s 
personal impression of a field that gets more and 
more difficult to oversee, due to its breadth and the 
ever-increasing body of data. In this paper, we discuss 
how meta-analysis can help to digest this vast amount 
of information in a structured way. First, we focus on 
the need for generalized dose-response curves and 
explore some of the advantages and limitations of an 
approach we refer to as ‘MetaPhenomics’. Second, we 
illustrate this methodology with 13 updated and 12 
previously unpublished dose-response curves, focus-
ing on the effects of light intensity on plants. We then 
go a step beyond and ask to what extent interaction 
between two or more environmental factors can be 
quantified. Finally, we discuss some possible options 
to expand this approach to the fields of molecular sci-
ences and show how dose-response curves could be 
advantageously used for improving crop or ecosystem 
modeling.

Meta‑analyses of plant responses 
to the environment

The need for generalization

Meta-analyses are quantitative analyses of a range 
of primary studies (Harrer et  al. 2021). They were 
initially developed in the medical field, to evaluate 
results of various clinical trials. The integrative power 
of the meta-analytical approach subsequently has led 
to wide applications in other biological disciplines 
(Hedges et  al. 1999). Meta-analyses in the botanical 
field sometimes target the environmental response of 
one specific species (e.g. Ainsworth et al. 2002), but 
are generally broader: They often focus on a range of 
species with common characteristics (crop species, 
conifers; e.g. Kimball 2016) or plants investigated 
with a specific methodology (such as CO2 enrichment 
with FACE technology; Ainsworth and Long 2021). 
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In the broadest sense, they may even target responses 
of hundreds of species (Van Kleunen et  al. 2010; 
Liang et  al. 2020). In almost all of these compila-
tions, conditions among experiments will be variable: 
physiologists preferably study treatments in growth 
chambers where all other conditions are controlled, 
horticultural scientists predominantly use glasshouses 
that mimic horticultural practice, whereas agrono-
mists and ecologists rely mostly on field studies. All 
of these scientists grow plants under a specific set 
of environmental conditions, yet try to unravel prin-
ciples, which are hopefully appliccable to plants of 
more species, and grown at a wider range of condi-
tions. Experiments that have been carried out at a 
range of background conditions will likely allow for 
more general conclusions (Richter et  al. 2009), and 
such a generality applies even stronger to meta-analy-
ses where a range of experiments is combined (Harrer 
et al. 2021).

An important requirement in science is to discuss 
results in relation to ‘what is known already’. Citation 
of papers that confirm the results presented in a given 
paper help to achieve a sense of generality. With the 
myriad of published papers, it is often not difficult to 
find one or more publications where similar results 
have been observed. If this happens not to be the 
case, then simple ‘explanations’ can be suggested for 
observed discrepancies: e.g., other experiments were 
done with another species, at a different growth stage, 
or in a different growth environment. However, it is 
not easy to achieve firmer ground without a more sys-
tematic approach. Meta-analysis could be helpful to 
judge how general an observed difference between 
two treatments, for example low and high light, is. At 
the same time, it enables to test whether phylogeny 
(e.g. species from different families) or functional 
type of species (e.g. C3 vs. C4 plants) are relevant fac-
tors explaining variation in response among the range 
of compiled experiments.

There is another source of variation among exper-
iments that is often not taken into account when 
comparing data. Using the example of light again, 
two experiments may show different phenotypic 
responses to light intensity (e.g. a strong positive 
effect vs. no effect, Fig. 1a). Where plant biologists 
often study the performance of a species like Arabi-
dopsis thaliana at relatively low light intensities (say, 
100 and 200 μmol.m−2.s−1), agronomists may prefer 
to compare light effects on a given crop species at 

much higher light levels (say 600 and 1200  μmol.
m−2.s−1), because that bears more relevance to field 
conditions. Therefore, it could well be that differ-
ential results between these two experiments for a 
given phenotypic trait are only found because the 
effects of light were studied at different and non-
overlapping ranges of an overall non-linear dose-
response curve (Fig. 1b). Consequently, it would be 
very helpful if meta-analyses focusing on the effects 
of a specific environmental factor on plants would 
include the actual quantitative levels of the environ-
mental factor of interest. Not only that, rather than 
asking whether two specific levels of a given envi-
ronmental factor have differential effects on the 
plant phenotype, it would be far more instructive to 
derive dose-response curves from these data, as they 
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Fig. 1   Hypothetical example of how contrasting results from 
two experiments (colour-coded orange and green) can be inter-
preted. Differences in the response of a given phenotypic trait 
Y to, for example, a low and high light intensity could be due 
to a contrasting species or different growth facilities, or b due 
to rather different light levels used across experiments, with the 
two species actually following exactly the same dose-response 
curve
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bear information over a wide range of levels and are 
therefore more informative to analyze and compare 
plant responses. The derivation of generalized dose-
response curves by means of meta-analysis is the 
main focus of this paper.

Compiling and scaling data

For the MetaPhenomics database we compile envi-
ronmental and phenotypic data, mainly from pub-
lished experiments, where plants were exposed 
(for most of their life) to different levels of a spe-
cific environmental factor. The choice of the meas-
ure for characterization of the environmental factor 
requires careful consideration. On the one hand, this 
measure should be sufficiently relevant and precise 
to adequately capture the plant’s responses. On the 
other hand, it should not require far more detail 
than what is usually described in literature, as this 
would result in the exclusion of too many experi-
ments from the meta-analysis, making the results 
less broadly applicable (Harrer et al. 2021). There-
fore, this choice is a balancing act between preci-
sion on the one hand and generality on the other. 
For example, in the case of light, ‘photosynthetic 
photon flux density’ (PPFD; μmol.m−2.s−1) would 
seem a logical first choice, as it is widely used in 
the plant biology literature. However, this is prob-
lematic, as glasshouse and field experiments are 
carried out at PPFDs that fluctuate continuously 
within and among days. In many of those experi-
ments authors report ‘PPFD measured at 12 o’clock 
under clear sky’ or ‘percentage of full light meas-
ured under an overcast sky’ to characterize light 
levels. However, such characterizations are not 
well-defined and incomparable across experiments, 
as the maximum light intensity varies with season, 
latitude, shade from surrounding trees or buildings 
and - in the case of glasshouses - with roof trans-
parency. Moreover, both measures ignore the fre-
quency of sunny and cloudy days and duration of 
the light period. An alternative measure to charac-
terize light intensity, which is applicable across all 
experimental platforms, is the Daily Light Integral 
(DLI, mol.m−2.day−1), the flux of quanta integrated 
over the day and averaged over the experimental 
period. This measure has the additional advan-
tage that many of the longer-term morphological 
and plant growth responses are known to be better 

correlated with DLI per se than with photon flux 
density at any moment in time or duration of the 
light period (Poorter and Van der Werf 1998; Kjaer 
and Ottosen 2011; Niinemets and Keenan 2012). 
However, using the average DLI over the experi-
mental period will unavoidably miss out on details 
such as variability that may occur within the day 
between temporarily low-light and high-light peri-
ods, or similar variation among cloudy and sunny 
days during the experimental period (Wayne and 
Bazzaz 1993; Matsubara 2018). Another source 
of error more specific for growth chambers is that 
there is often moderate variation in light intensity 
depending on the horizontal position of a plant, but 
strong vertical variation within the growth chamber 
(Poorter et al. 2012a, 2012b). With some research-
ers measuring light intensity at pot level, others at 
plant height, and with most of these values deter-
mined only once during the experiment, also those 
DLI values are approximations of the actual light 
levels received by the plants.

As much as for the environmental characterization, 
there is uncertainty and/or variability in the determi-
nation of phenotypic traits. Part of this is random vari-
ation, due to well-known biological variability. Part is 
systematic, and may relate to the development of phe-
notypic traits with age or size, or to systematic differ-
ences among measurement procedures (Quentin et al. 
2015). Additional difficulties are that experiments are 
often carried out with different species, and dissimi-
lar environmental backgrounds, such as pot size or 
watering frequency and duration of the experiment. 
These all preclude direct absolute comparisons of data 
among experiments. However, it is feasible to com-
pare relative responses among experiments, by nor-
malizing all phenotypic data within each experiment 
to the trait value observed at a predefined level of a 
given environmental factor (Poorter et  al. 2010; see 
Box 1 for a summary of the methodological steps fol-
lowed). The advantage of using a scaling approach is 
that it is very flexible, and works even for experiments 
with only two or three levels of a given environmental 
factor. Poorter et al. (2019), for example, normalized 
phenotypic data to a reference DLI level of 8 mol.m−2.
d−1. If an experiment contains this level as one of the 
treatments, the calculations are straightforward (see 
Fig. 2a, b, orange lines). If two DLI levels are applied 
where one level is below and the other above that pre-
defined value, normalization can be achieved after 
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Fig. 2   Calculation of 
dose-response curves from 
various experiments. a 
Response of plants to light, 
as observed for a given trait 
Y, expressed in absolute 
units. In this case, results 
of 7 independent experi-
ments with 2–9 light levels 
are shown. For one of the 
orange experiments the 
Y-level at the reference 
light level for scaling is also 
indicated by (XR,YR). b 
The same response for the 7 
experiments, when all val-
ues are expressed in relative 
units, scaling to the abso-
lute phenotypic value at the 
reference DLI of 8 mol.
m−2.d−1. c Summary graph, 
showing the median values 
for the 10 points with the 
lowest DLI values, the 10 
intermediate points and the 
10 with the highest DLI 
value (green dots) as well 
as the fitted curve over the 
range of DLI data (green 
line). In cases where >100 
data are available, points 
will not be grouped per 10, 
but per decile. The ratio 
of the fitted phenotypic 
values at a DLI of 50 and 1 
(these points on the curve 
are indicated by black open 
squares) is called the plas-
ticity index (PI) and has a 
value of 10.8 in this case. In 
case of negative trends, the 
ratio is inversed and mul-
tiplied by −1, to maintain 
the same size of scaling, but 
clearly indicating the nega-
tive direction of response
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Box 1   Methodology of the MetaPhenomics approach

1. Collect the trait and environmental data from the literature.
- Each trait entry Y in the database is the average value over one or more measurement days.
- Data are only considered for plants that had ample time to acclimate to their environment, which we define as being at least 

2 weeks under those conditions and achieving preferably >80% of their biomass during the experimental treatment.
- Physiological measurements are considered for the vegetative and early flowering phase, vegetative biomass at the end of the 

growth experiment, generative traits at the end of the generative phase.
2. Double-check data for possible mistakes in numbers or units.
- Trait data are checked against the normal ranges (5th - 95th percentiles) of the data already in the database.
3. Scaling data for each species in each experiment.
- For every trait and each species (or genotype) within a given experiment, calculate by means of interpolation what estimated 

value YR they have at the predefined reference level XR of the environmental factor of interest.
- Scale all observed data for that species and experiment by dividing their trait values Y by YR.
- To constrain the weight of an individual experiment in the overall compilation, consider a maximum of 10 species and 3 geno-

types per experiment. If selection is necessary, choose species in a way that maximises phylogenetic or ecotypic diversity.
4. Scale the trait data from experiments where the range of levels X for the environmental factor of interest did not contain 

XR.
- Fit all scaled Y vs X data as calculated in point 3 by a smoothed regression.
- For each of the traits of species and experiments that did not include XR, take the treatment level XC which is closest to XR, and 

consider what the average Y′-value is as given by the smoothed regression.
- Scale all other Y data in that experiment with respect to the Y-value at XC and multiply all with the Y′-value.
- After the previous step, remove the (XC,YC) data point of each experiment that did not contain XR in their environmental range 

from the data, as they do not contain independent information anymore after the scaling.
5. Establish unsmoothed dose-response curves and normal ranges.
- Order all data points by their X-value and divide them in 10 decile groups.
- Calculate median values for X and Y for each decile group.
- 10th, 25th, 75th and 90th percentiles for Y in each decile group indicate the normal ranges to be expected.
6. Fit smoothed dose-response curves.
- Fit each of the four following equations through all scaled data:
• The null model of no response: 
Y = 1
• A linear equation: 
Y = a + bX
• A saturating equation (monomolecular function):
Y = a. (1 − b. exp−cX)
where parameter a reflects the a-symptotic value, a and b co-determine the trait value at X = 0 and b and c co-determine how 

quickly saturation is reached.
• A quadratic equation with or without a local minimum or maximum:
Y = a + bX + cX2

- Test the most appropriate of these 4 equations by means of the Akaike Information Criterion
7. Calculate Plasticity index (PI).
- Take the ratio of YH and YL, for a predetermined XH and XL., as caluclated from the dose-response curve selected in step 6. For 

light intensity we chose XH and XL to be 50 and 1 mol.m−2.d−1. If YH is smaller than YL, then calculate the inverse and multiply 
by −1, to indicate negative responses with increasing X.

8. Calculate the Consistency index (CI).
- For every species x experiment combination, deduct the phenotypic value observed at the lowest level of the environmental vari-

able from the phenotypic value observed at the highest level of the environmental variable.
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interpolation (Fig. 2a, b; black lines). By applying this 
normalization, variation across species and experi-
ments can largely be partialled out (Fig. 2c).

Establishing dose‑response curves

Having computed relative responses for a given trait 
in each species x experiment combination of the data 
compiled, the next step then is to mathematically 
describe the relationship with the environmental fac-
tor of interest by establishing the appropriate dose-
response curve. This can be done by fitting one of a 
variety of functions. Of the four options we use, the 
null model is that the trait of interest Y is not affected 
by the level of the environmental factor X at all. The 
second is a linear relationship. Another frequently-
occurring relationship is a saturating curve, which 
approaches a maximum or minimum. For this we 
use a monomolecular function with three parameters 
(France and Thornley 1984; Box  1). More rarely, 
dose-responses will show a quadratic relationship, 
with or without a local optimum or minimum. These 
curves are characterized by a 2nd-degree polynomial. 
Out of these four, the best-fitting curve is selected 
statistically.

Based on the data and the selected equation, three 
descriptors of the established dose-response curve 
can be calculated:

•	 Plasticity Index (PI). This is the ratio of trait 
values at a predefined high and low value of the 
environmental factor of interest. In case of a ratio 
less than 1, the inverse is taken and multiplied 
by −1, to clarify that the relationship is nega-
tive while keeping plasticity values in the same 
range (>1). The advantage of the plasticity index 
is that the extent of plasticity for a wide range of 
dose-response curves for different traits or species 
groups can easily be compared.

•	 Consistency Index (CI). This value indicates in 
what percentage of the species × experiment com-
binations the plants exposed to the highest level 
of the environmental factor of interest do have 
a higher value for the trait of interest than those 
exposed to the lowest level. Values close to 0% or 
100% indicate a high consistency across experi-
ments, whereas a value close to 50% indicates a 
highly variable response. The consistency index is 
particularly informative when discriminating traits 
that change marginally but do so in a very consist-
ent manner from those that change marginally and 
variably.

•	 Reliability Index (RI). Based on the number of 
observations per trait, the number of species on 
which the observations are based, the range of the 
environmental factor of interest over which traits 
are present in the database, and the inverse of the 
variability around the fitted dose response curve, 
the reliability of the dose-response curve is quanti-
fied on a scale from 1 to 10. The reliability index 
can be used to judge how much a dose-response 
curve could change when data of new experiments 
are included in the database.

The different steps to arrive at dose-response 
curves and their descriptors are described in more 
detail in Box 1.

Data distribution

The MetaPhenomics approach is flexible and can 
accommodate information from both small- and 
large-scale experiments, carried out over both nar-
row or wider ranges of values for environmental fac-
tors of interest. But to what extent is such information 
available from the literature? Taking the example of 
light again, most experiments in growth chambers, or 
glasshouses outside the summer season, will achieve 
DLI levels that are at best intermediate as compared 

- Determine the % of cases in which the difference is positive, and add to that half of the % of cases in which the difference is 
exactly 0.

9. Evaluate differences in the dose-response curves between species groups.
- Carry out repeated bootstrapping for observations of each group of interest and calculate for each iteration the PI. Statistical 

evaluation can be obtained by evaluating the distribution of the calculated PI values for the different species groups.
10. More details.
- More specific details on test procedures can be found in the supplement of Poorter et al. (2022).

Box 1  (continued)
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to those prevailing in the field during the growing 
season. Some experiments specifically focus on low-
light acclimation (e.g. Bloor and Grubb 2003), or 
plant responses at high-light levels (e.g. Pendleton 
et  al. 1967). Overall, the range of experimentally-
applied light levels is wide, but the distribution is 
clearly skewed, with less information at high DLI lev-
els (Fig. 3a). In the case of atmospheric CO2 experi-
ments, the distribution of [CO2] applied is different. 
Most experiments so far have focused on the effect 
of future CO2-concentrations, using ambient CO2 as 

a control, and twice-ambient as a treatment. Conse-
quently, there are clear peaks in the number of experi-
ments carried out between 350 and 400 μmol.mol−1 
and 700–800  μmol.mol−1, with far less information 
outside these regions (Fig.  3b). Note that these dis-
tributions vary among traits, implying that dose-
response curves for less-frequently measured traits 
may only be derived over a more limited range.

The non-uniform distribution of experimen-
tal data for the environmental factor of concern has 
two consequences. Firstly, the reference value of the 

Fig. 3   Characterization 
of the MetaPhenomics 
database with respect to 
data for light (DLI) (a, 
c, e) and [CO2] (b, d, f). 
a, b Distribution of Leaf 
Mass per Area (LMA) 
data over the full range of 
the environmental factor 
considered, for a DLI and 
b [CO2]. c, d Percentage of 
the experimental LMA data 
where normalization can 
be done by interpolation, as 
dependent on the exact level 
of the environmental factor 
of interest used for the nor-
malization (XR), for c DLI 
and d [CO2]. e, f Estimated 
Plasticity Index (PI) for 
LMA as dependent on the 
level of the environmental 
factor of interest used for 
the normalization (XR), for 
e DLI values ranging from 
1 to 50 mol.m−2.d−1 and 
f [CO2] between 50 and 
1200 μmol.mol−1. Vertical 
lines denote the normaliza-
tion values XR, 8 mol.m−2.
d−1 for DLI and 450 μmol.
mol−1 for [CO2]. The data 
pertaining to these distribu-
tions and the nomenclature 
followed are from Poorter 
et al. (2019, 2022)
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environmental factor that is chosen to determine the 
trait value applied for scaling within each experiment 
should preferably encompass as many experiments as 
possible. The best choice in the case of DLI is a value 
of around 8  mol.m−2.d−1, as this yields a maximum 
of 81% of the cases where interpolation is possible 
(Fig. 3c). In the case of CO2, where almost all experi-
ments use ambient values as ‘control’ and 1.5x or 2x 
that value as ‘treatment’, any value between 400 and 
550 μmol.mol−1 will imply that almost 100% of the 
experiments are amenable to scaling (Fig.  3d). Sec-
ondly, information at the outer ends of the curves is 
generally scarce, but highly relevant for establishing 
the dose-response curve over a wide range. Some 
experiments focus only on various low-light or high-
light levels and do not contain 8  mol.m−2.d−1. We 
therefore developed a procedure to link those data 
sets to all other scaled data, be it with a loss in the 
degrees of freedom (see point 4 in Box 1). Although 
this helps to add some additional data at the outer 
ends of the curves, data for these ‘extreme’ condi-
tions remain limited. In the case of DLI, we were able 
– for most traits - to construct dose-response curves 
over a 50-fold range (1–50  mol.m−2.day−1; Poorter 
et al. 2019), whereas for [CO2] for most traits it was 
only feasible to derive curves over a six-fold range 
(200–1200 μmol.mol−1; Poorter et al. 2022).

Although it intuitively makes sense to choose the 
level of the environmental factor used for scaling the 
trait values such that it is common to many experi-
ments, it is still relevant to know how sensitive the 
resulting dose-response curve is  for the reference 
level chosen. We therefore calculated the plastic-
ity index (PI) of the observed dose-response curve, 
using Leaf Mass per Area as an example, for which 
we took the ratio between the fitted LMA values at 
a DLI of 50 and 1 mol.m−2.d−1, or a [CO2] of 1200 
and 200 μmol.mol−1. We did so for a wide range of 
reference values for the environmental factor of inter-
est. As expected, the choice for an extreme level that 
is hardly contained in any experiment may yield a 
somewhat deviating estimate. However, over a wide 
range of values for DLI and CO2, the resulting Plas-
ticity Index is stable, as illustrated in Fig. 3e, f.

Further analyses

As a first approximation, we assume that the data we 
found in the compilation underlay a universal trend, 

valid for all plant species, and can be captured with 
one dose-response curve. This may often be suffi-
cient. However, it cannot be excluded that different 
species groups have different dose-response curves. 
For example, photosynthetic responses to [CO2] are 
generally different for C3 and C4 species, and this 
may have consequences for many more traits. Simi-
larly, species from low- and high-light environments 
or cold and warm habitats may have different optima 
for various traits. Fitting one dose-response curve 
through all those data could then easily lead to over-
simplification. Therefore, it is good to make the addi-
tional step to see whether species from different func-
tional or phylogenetic groups show dose-response 
curves that deviate from the main trend, or have dif-
ferent plasticity. (See point 9 in Box 1).

Another application of the dose-response curves is 
that normal ranges can be calculated: By ranking all 
data from a low to a high value for the environmen-
tal factor of interest, and then dividing them into ten 
equally-sized decile groups, we can not only calculate 
the median X (environmental factor) and Y (scaled 
trait), but also calculate, for example, the 10th and 
90th percentiles of the scaled trait in each of the ten 
decile groups. In this way we have the opportunity 
to check whether any specific experiment is indeed 
deviating from the majority of all other experiments, 
which could be an error, or an interesting case of a 
species that responds genuinely different from the 
majority of plants.

The effects of light intensity

Poorter et  al. (2019) quantified the response of 70 
plant traits employing dose-response curves, focus-
ing on anatomy/morphology, chemical composi-
tion, and physiology of leaves, stems and roots, as 
well as growth/reproductive characteristics of whole 
plants. To illustrate the potential of generalized dose-
response curves we first present here trait dependen-
cies on Daily Light Integral (DLI) for 13 of the 70 
previously published traits, using an extended data set 
containing >20% more experiments. We then present 
DLI dose-response curves for 12 other traits, which 
were not included in the Poorter et al. (2019) analy-
sis. DLI varies tremendously, depending on loca-
tion, cloud cover, time of the year and the presence 
of structures that cast shade. For plants present in a 
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vegetation, shading will typically be caused by neigh-
boring plants. Light intensity then critically depends 
on the leaves’ vertical position in the canopy, with 
subordinate leaves/plants experiencing values that 
could be less than 1 mol.m−2.d−1. On a monthly basis, 

high values sometimes exceeding 50 mol.m−2.d−1 are 
experienced in summer in arid regions around the 
Tropics of Cancer and Capricorn. For the plasticity 
index, we therefore decided to focus on the DLI range 
of 1–50 mol.m−2.d−1.

Fig. 4   Generalised dose-
response curves with 
respect to light for a six 
photosynthesis-related traits 
and b seven growth-related 
traits. Abbreviations are as 
follows: a Phot/AGL, rate of 
photosynthesis per unit area 
and measured at growth 
light conditions; Rubi/A, 
amount and/or activity of 
the enzyme Rubisco per 
unit leaf area; LMA, leaf 
mass per area; Phot/ASL, 
rate of photosynthesis per 
unit leaf area measured 
at a saturating light level; 
[Norg]L, leaf organic 
nitrogen per unit leaf mass; 
Phot/MSL, rate of photosyn-
thesis per unit leaf mass and 
measured at a saturating 
light level. b ULR, unit leaf 
rate; VegBio, vegetative 
biomass per plant; RGR, 
relative growth rate; RMF, 
root mass fraction; LMF, 
leaf mass fraction; SMF, 
stem mass fraction; SLA, 
specific leaf area. Data 
are based on Poorter et al. 
(Poorter et al. 2019; a 
compilation of 500 experi-
ments), complemented with 
data from an additional 110 
papers
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Dose‑response curves for photosynthetic and growth 
parameters

It is well-known that photosynthetic capacity per unit 
leaf area (Phot/ASL) increases with the light inten-
sity plants experience during growth (Björkman and 
Holmgren 1966; Sims and Pearcy 1989), which hap-
pens to occur in a saturating fashion (see Fig. 4a; also 
for other traits discussed). On average, the capacity 
more than doubles over the 1–50 mol.m−2.d−1 trajec-
tory (PI = 2.2). Leaf mass per area (LMA) increases 
even more strongly (PI = 2.7), with a high consistency 
index (99%), and so does the nitrogen content per unit 
leaf area (PI = 2.0; Poorter et al. 2019) as well as the 
amount or activity of the enzyme Rubisco expressed 
per unit area (PI = 4.5). Although it is clear that large 
changes occur in the N-allocation within the photo-
synthetic apparatus, the total organic N content per 
unit leaf dry mass ([Norg]L) remains remarkably con-
stant. The resulting PI has a value of −1.1, indicat-
ing that the N concentration may decrease marginally 
over the DLI range considered. Photosynthetic capac-
ity per unit leaf dry mass (Phot/MSL) even decreases 
somewhat more strongly over the trajectory consid-
ered (PI = -1.2). Therefore, for this set of traits, light 
responses expressed on an area-basis are all strong, 
but small or absent when expressed on a leaf dry 
mass basis. Clearly, the increased thickness of pali-
sade and spongy parenchyma form the main drivers 
of the increased photosynthetic capacity.

How then does the actual performance of the 
leaves change with DLI? Next to leaf structure, pho-
tosynthetic compounds, and stomatal conductance, 
this is co-determined by the prevailing light inten-
sity. Photosynthetic activity per unit leaf area under 
growth light conditions (Phot/AGL) increases strongly, 
with a PI of 15.1 (Fig. 4a). This is the largest increase 
over the 1–50 mol.m−2.day−1 range for all traits con-
sidered here. Most of the increase is the result of a 
direct effect of light intensity on photosynthetic rate. 
Part of the increase in Phot/AGL, however, is enabled 
by the increase in photosynthetic capacity (Phot/ASL) 
with DLI, which enables better exploitation of light at 
the high-intensity range.

At the whole-plant level, a simple model to fac-
torize growth is RGR = ULR * SLA * LMF (Evans 
1972; Lambers and Poorter 1992), where RGR is the 
Relative Growth Rate, ULR the biomass increase per 
unit leaf area (Unit Leaf Rate), SLA the leaf area/leaf 

biomass ratio (Specific Leaf Area) and LMF the frac-
tion of biomass invested in leaves (Leaf Mass Frac-
tion). Among the growth-related traits, ULR is the 
variable most strongly related to photosynthesis per 
unit leaf area, and increases over the light trajectory 
considered with a PI of 8.9 (Fig. 4b; also for the next 
traits discussed). However, that value is only little 
more than half the increase in photosynthetic activ-
ity per unit area. This could be partly explained by 
the fact that photosynthesis is typically measured on 
the ‘youngest fully-developed leaf’ exposed to the 
prevailing light intensity. Many of the plant’s other 
leaves are subject to self-shading and thus have lower 
photosynthetic rates, making whole-plant C-gain 
lower than estimated from these single leaf measure-
ments. Self-shading is more pronounced at high DLI 
compared to low, due to larger plant size. A decrease 
in photosynthetic capacity in older and/or shaded 
leaves may also contribute. Furthermore, in field and 
glasshouse experiments, photosynthesis is typically 
measured at noon when light intensity is highest, 
which may also overestimate the daily C-gain dif-
ferences between light treatments. Additionally, we 
anticipate an increased respiratory load, especially 
because the allocation to leaves and stems (PI = -1.2) 
decreases in favor for biomass allocation to the roots 
(PI = 1.6). A somewhat higher [C] in high-light plants 
(PI = 1.1; Poorter et al. 2019) may also contribute to 
the observed difference in PI between Phot/AGL and 
ULR. Next to the biomass shift towards roots, there 
is also a decrease in SLA (inverse of LMA). Conse-
quently, the increase in RGR is much more modest 
than the increases in photosynthesis or ULR. How 
this then results in changes in vegetative biomass 
will depend partly on the duration of growth and how 
plant size feeds back on the trajectory of growth stim-
ulation. For the data compiled for these 610 experi-
ments, the median response for vegetative biomass is 
almost 10-fold (PI = 9.8).

Dose‑response curves for 12 additional traits

Next to the dose-response curves for 70 plant traits 
as presented in Poorter et  al. (2019), we have com-
piled data for 12 more traits, for which we present 
the response curves here (Fig. 5, Table 1, see also the 
Suppl. Figs. S1-S12 for detailed graphs per trait). The 
first variable is the volumetric fraction of airspaces 
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in the leaf (VoFrAs). This variable is not frequently 
reported, but there is a highly consistent decrease 
with increasing light intensity. Although a densely 
packed leaf will increase the photosynthetic machin-
ery per unit leaf area, it may at the same time com-
plicate the diffusion of CO2 from the stomates to 
the chloroplasts (Oguchi et al. 2018). Stem diameter 
(SteDia), generally measured at the base of the plant, 
or otherwise at breast height for trees, increases with 

light intensity in a saturating fashion, and with a very 
high consistency (Fig.  5b; CI = 98). Of all the mor-
phological traits measured, plant height was on aver-
age one of the least affected by light (Poorter et  al. 
2019). Consequently, the slenderness index, the ratio 
between plant height and stem diameter, decreases 
with DLI (SleInd, Fig. 5c). We therefore presume that 
plants growing in the shade have a higher chance of 
mechanical failure (Peltola et al. 1999).
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Fig. 5   Dose-response curves of 12 plant variables in rela-
tion to the daily light integral (DLI, mol m−2 d−1), as well as 
the Plasticity Index (PI) over the 1–50 mol m−2 d−1 range, the 
Consistency Index (CI) and the Reliability Index (RI). The 
traits given are a SteDia, stem diameter; b SleInd, slenderness 
index; c C/NL, carbon to nitrogen ratio of the leaves; d N/PL, 
nitrogen to phosphorous ratio of the leaves; e ApQuYi, appar-
ent quantum yield; f Phot/NGL, rate of photosynthesis per unit 
leaf N measured under growth light conditions; g Δ13C, 13C 
discrimination as measured in leaf biomass relative to atmos-
pheric conditions; h iWUE, intrinsic water use efficiency; i 
Resp/A, leaf respiration rate per unit leaf area; j TiToFl, time 
to flowering. All scaled values for a given trait were grouped 

into deciles based on the DLI level during growth, and median 
values for each decile group are indicated as green dots in the 
panels. The closer the points are in the x-direction, the denser 
the information in that DLI range. The line is the smooth curve 
fitted through all data points present in the 0–60 mol.m−2.d−1 
range, and given over the DLI range over which observations 
were present in the database. The strength of the Consistency 
Index is indicated by the number of orange symbols: none: 
% increases in the trait value with increasing DLI: 40–60%; 
✹: 30–40% or 60–70%; ✹✹: 20–30% or 70–80%; ✹✹✹: 
10–20% or 80–90%; ✹✹✹✹: 0–10% or 90–100%. The 
strength of the Reliability Index: none: RI = 1–2; ✹: 3–4; ✹✹: 
5–6; ✹✹✹: 7–8; ✹✹✹✹: 9–10
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The C-concentration of the leaves generally slightly 
increases (PI = 1.1; Poorter et al. 2019), whereas [N] 
decreases (PI = −1.3), and consequently the C/N ratio 
of the leaves is increasing, with a PI of 1.4 and a high 
consistency index (Fig. 5d; CI = 91). Preliminary data 
show that the C/N ratio of roots is increasing as well. 
Accumulation of starch and soluble sugars (Rod-
ríguez-López et al. 2014), higher levels of C-rich sec-
ondary compounds (Poorter et al. 2006) as well as the 
exchange of nitrate for soluble sugars (Blom-Zandstra 
et al. 1988) may all contribute to this increase in C/N 
ratio. Leaf phosphorous concentration decreases more 
(PI = -1.8; Poorter et al. 2019) than the leaf nitrogen 
concentration, and hence the N/P ratio of the leaves 

increases with increasing DLI (Fig.  5e, PI = 1.3), be 
it with a low consistency. This mirrors the effect of 
[CO2], where leaf N/P decreases with increasing CO2 
levels (Poorter et  al. 2022), also with relatively low 
consistency. It would be interesting to test whether 
the opposing effects of light and [CO2] on the tran-
spiration rate differentially affects mass flow around 
the roots, thereby affecting the uptake of nitrate more 
than of phosphorous compounds. Leaf carotenoid 
concentration generally scales well with chlorophyll 
content, but using the investment in carotenoids rela-
tive to chlorophyll, we see that carotenoid presence is 
favored at higher light levels (Fig. 5f, PI = 1.6). This 
response is predominantly due to increases in the 

Table 1   Summary of the dose-response curve analysis for 12 plant traits as dependent on the daily light integral (DLI) during 
growth

Columns 2 and 3 indicate the range of daily light integrals for which records are present in the database and the total number of 
observations (= number of averaged values per species and DLI over all experiments; rounded to the nearest 10). Column 4 shows 
the number of species for which we have observations for the various traits. The fit refers to the form of the dose-response curve. 
Fitted equations were either no relationship (−; Y = a where Y is the scaled value of the phenotypic trait of interest and a is the 
overall average of Y values); linear (L; Y = a + bX where X is the DLI), or saturating (S; Y = a (1 - b. e(−cX))). The Plasticity Index 
(PI) as used here is the fitted value at DLI = 50 divided by the fitted value at DLI = 1, with positive values indicating positive trends 
with DLI and negative values decreasing trends; bold numbers indicate a |PI| ≥ 2.0. The pseudo r2 refers to the approximate fit of 
the selected equation. The Consistency Index refers to the percentage of all cases (species x experiment combinations) where the 
phenotypic value at the highest DLI was larger than at the lowest DLI, indicating the consistency of the response. Values close to 0 
or 100 indicate highly-consistent positive or negative responses. The next column shows the reliability index, based on the number 
of records in the database for that trait, the number of different species, the range of DLI levels at which it is measured and the aver-
age deviation from the median response, with a relative scale from 1 (low) to 10 (high reliability level). The last 3 columns give the 
values for parameters a, b and - if relevant - c for the equations mentioned above. Trait abbreviations: VoFrAs, Volumetric Fraction 
of Airspaces; SteDia, Stem Diameter; SleInd, Slenderness Index; C/NL, Carbon to Nitrogen ratio of the Leaves; N/PL, Nitrogen to 
Phosphorous ratio of the Leaves; Caro/Chl, carotenoid content per unit chlorophyll; ApQuYi, Apparent Quantum Yield; Phot/NGL, 
rate of Photosynthesis per unit leaf N as measured under Growth Light conditions; ∆13C, discrimination against 13C in the leaves of 
whole plant; iWUE, instantaneous Water Use Efficiency; Resp/A, leaf Respiration per unit leaf Area; TiToFl, Time To Flowering. 
The relative weight wi of the model selected by the AICc-test is given by: *, 0.70 < wi < 0.90; **, 0.90 < wi < 0.98; ***, wi > 0.98, but 
only indicated in case the Consistency Index is <40% or > 60%

Trait DLI range 
(mol.m−2. 
d−1)

# of 
observa-
tions

# of species fit Pseudo r2 Plasticity (PI) Consist-
ency 
(CI)

Reli-
ability 
(RI)

a b c

VoFrAs 0.9–40 30 10 L*** 0.61 −1.5 0 3 1.077 −7.13e-3
SteDia 0.7–52 200 65 S*** 0.54 1.7 99 6 1.285 0.4504 9.39e-2
SleInd 0.7–52 170 60 L*** 0.37 −1.7 20 6 1.070 −9.12e-3
C/NL 1.0–46 200 75 S*** 0.30 1.4 91 5 1.163 0.2952 9.56e-2
N/PL 0.8–46 120 40 L 0.14 1.3 57 4 0.9396 5.28e-3
Caro/Chl 0.5–70 110 40 S** 0.52 1.6 94 5 1.549 0.4471 3.24e-2
ApQuYi 0.4–70 270 85 – 0.00 −1.1 41 6 1.011 −1.66e-3
Phot/NGL 3.0–46 40 20 S*** 0.67 3.1 100 3 1.560 0.7476 9.24e-2
Δ13C 0.2–64 160 45 L*** 0.60 −1.3 0 7 1.044 −4.90e-3
iWUE 0.4–70 120 45 S*** 0.41 2.4 84 4 1.607 0.6415 6.73e-2
Resp/A 0.4–70 330 120 S* 0.60 3.0 96 6 3.865 0.8198 1.25e-2
TiToFl 1.2–34 140 35 S*** 0.73 −2.0 7 4 0.7588 −1.185 1.68e-1
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three carotenoids involved in the xanthophyll cycle, 
although lutein and β-carotene increase with DLI as 
well (Esteban et al. 2015).

We also determined response curves related to 
the physiology of the plants. The apparent quantum 
yield is the CO2 fixed per photons incident on a leaf 
measured in the linear light-limited part of the pho-
tosynthesis-light response. Theoretically, we would 
not expect this variable to be affected by growth light 
conditions (Evans 1987), and indeed, taken over all 
experiments the apparent quantum yield remains vir-
tually constant (ApQuYi, Fig.  5g). However, there 
is a remarkable amount of variability across experi-
ments (Suppl. Fig. 7), probably reflecting the differ-
ent ways the apparent quantum yield is calculated, in 
combination with the difficulty to measure close-to-
zero CO2 fluxes in leaf cuvettes that contain a small 
leaf area (Pons and Welschen 2002). Photosynthetic 
Nitrogen Use efficiency, the rate of photosynthesis 
per unit leaf N determined under growth light inten-
sities, increases with DLI, with a very high consist-
ency (Phot/NGL; Fig.  5h). There is a slight but con-
sistent decrease in the intercellular to ambient [CO2] 
ratio (ci/ca) of the leaves in plants grown at higher 
DLI (Poorter et  al. 2019), and so we expect a long-
term indicator of the ci/ca ratio, Δ13C, to decrease as 
well. This is indeed what happens, with high consist-
ency (Fig.  5i). With the large increase in photosyn-
thesis under growth light levels (PI = 15.1), and a 2.7 
fold increase in stomatal conductance we expected 
the intrinsic Water Use Efficiency (iWUE), the ratio 
of the two, to increase as well. This is indeed what 
is found (Fig.  5j), but the increase is less than the 
expected 6-fold increase calculated from the PI’s of 
the components. We have as yet no explanation for 
this discrepancy.

Leaf respiration per unit leaf mass is slightly 
affected by the light level during growth (Poorter 
et  al. 2019), but as LMA increases (Fig.  4a), we 
may expect respiration per unit leaf area to increase 
strongly with DLI. This happens to be the case, with a 
PI just slightly larger than the one for LMA (Resp/A; 
PI = 2.9; Fig. 5k). Also for this variable the CI is high. 
Finally, generative development is strongly retarded 
in low light, which shows up in a strongly increased 
time before plants flower (TiToFl; Fig.  5l). This is 
especially true for DLI levels lower than 10  mol.
m−2.d−1. Low-light plants are also much smaller 
in biomass. For some species, at least monocarpic 

perennials, it is known that flowering only occurs 
when plants reach a certain biomass (Klinkhamer 
et al. 1987; Pons and During 1987).

Further applications of MetaPhenomics

Interaction between environmental factors

So far, we have been able to construct dose-response 
curves for 12 abiotic environmental factors (Poorter 
et  al. 2009, 2012a, 2012b). For most factors, such 
as light and CO2, it is relatively easy to objectively 
quantify the levels plants are exposed to. However, 
for others -notably nutrients and water- it is more 
complex, as the growth restriction imposed by these 
soil resources depends not only on the level or 
amount applied, but also on additional factors such 
as pot and plant size. An alternative way to express 
the strength of the environmental limitation could 
then be to use the biomass of low-resource plants 
relative to those growing at optimal conditions.

Having established these dose-response curves, 
an interesting next step would be to calculate dose-
response surfaces, where the combined effect of 
two environmental factors on plant traits is visu-
alized. These dose-response surfaces are particu-
larly interesting to analyze how strong the interac-
tion between two environmental factors can be, and 
where in the environmental space the interactions 
occur. For example, is the relative response to envi-
ronmental factor X1 similar over a wide range of 
levels for environmental factor X2 and vice-versa? 
The Sprengel-Liebig Law of the Minimum assumes 
that plant growth is determined by only one envi-
ronmental constraint at a time (Van der Ploeg et  al. 
1999). Assuming this would also be true for other 
plant traits than biomass, we would for each of them 
expect simple dose-response curves consisting of two 
parts: a relatively linear increase (or a decrease) and 
a plateau. Dose-response surfaces would show simi-
larly abrupt changes. However, exactly because of the 
acclimatory changes plants realize, such as a change 
in biomass allocation, two or more environmental 
factors can be co-limiting at the same time (Bloom 
et al. 1985; Gorban et al. 2011). Consequently, dose-
response curves and surfaces will change smoothly 
rather than showing abrupt alterations. If interactions 
are largely absent, then the dose-response surface 
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could simply be composed by information from the 
two individual response curves.

Two problems arise which hinder the construction 
of dose-response surfaces. First, this analysis requires 
experiments where a factorial combination of two 
environmental factors is studied. Although factorial 
experiments are not uncommon, they comprise less 
than 30% of the data in the MetaPhenomics database. 
Thus, construction of these surfaces has to be done 
with ~70% less data than are available for simple 
dose-response curves. A second challenge is that trait 
scaling now has to be carried out with respect to two 
environmental factors. The chance that the trait scal-
ing value YR for this combination of reference lev-
els X1R and X2R can be obtained by interpolation is 
lower, and extrapolation is more complicated due to 
the 3-dimensional characteristic of the dose-response 
surfaces.

Dose‑response curves for gene expression, enzyme 
activities and metabolites

In principle, environmentally-induced changes in 
the levels of specific mRNA transcripts, proteins or 
metabolites are not different from changes in any clas-
sical phenotypic trait. We therefore can see a clear 
future for the MetaPhenomics approach in these areas, 
although the sheer amount of information makes the 
analyses more challenging. An additional complica-
tion is that most experiments in this field focus on the 
short-term consequences of changing a specific envi-
ronmental factor from level L1 to L2, with measure-
ments typically concentrating on the first 3–48 h after 
a shift (e.g. Liu et al. 2019). Often, many time-specific 
changes will occur over that period, on top of diurnal 
effects on gene expression. This makes it rather dif-
ferent from ecophysiological traits, where we sought 
to select experiments and harvests where plants had 
ample time to fully acclimate to the new environment. 
Bringing in time after a change as an additional factor 
in the analysis will allow for a more complete picture, 
but also make the calculations more complicated. The 
simplest first step would be to avoid the strong tem-
poral fluctuations after a switch and focus on the tran-
scriptome of plants that have fully acclimated to the 
new growth conditions. This kind of data, however, is 
very scarce in the literature (but see Walters 2005).

We carried out an experiment where A. thaliana 
plants were grown at five light intensities and sampled 

for RNA transcripts as well as capacities of various 
enzymes after plants had ample time to fully accli-
mate to their light environment. The experimental 
design allowed a first impression of a dose-response 
curve, with specifics of this experiment summarized 
in the legend of Fig.  6. The mRNA expression of 
early light-induced protein 1 and 2 strongly increased 
with light (Fig.  6a). They are thought to play a role 
in photoprotection. There was no change whatso-
ever in Rubisco activase and the gene encoding the 
small subunit of Rubisco. This may be surprising at 
first sight, as Rubisco strongly increases with DLI 
(Fig. 4a), but this is when expressed per unit leaf area. 
The increase on a dry mass basis is much smaller, 
due to the increase in leaf mass per area (LMA) 
and this measure may be more comparable to total 
mRNA. Expressions of elip2 and especially elip1 
showed strong increases with increasing DLI, as is 
also observed during shorter-term high-light exposure 
(Huang et al. 2019). A consistent decrease was found 
for pal4, which encodes a protein involved in lignin 
synthesis. We actually expected mRNA levels for this 
protein to increase with light, as lignin concentrations 
generally increase with light levels (Waring et  al. 
1985; Niinemets and Kull 1998). The discrepancy 
could be due to the timing of expression, post-trans-
lational modification in enzyme levels, or degradation 
processes.

One aspect which deserves attention is that expres-
sion of a given gene is generally calculated relative 
to the expression in all other genes. Integrating such 
data into the MetaPhenomics approach makes that in 
fact two different steps of normalization are carried 
out, which may complicate the interpretation of the 
link between mRNA data and ecophysiological traits. 
It is in principle possible to calculate the absolute 
concentration of a given mRNA, but for this, it is nec-
essary to use spikes (internal standards of synthetic 
RNA added at the start of RNA extraction), a prac-
tice which is still very little used in the plant sciences 
(e.g., Belouah et al. 2019).

Other fields where meta-analyses of data could 
yield instructive dose-response curves include the 
activity of enzymes (‘activome’), proteins in general 
(proteome) and metabolites (metabolome). Enzymes 
are major engines of cell metabolism, and the differ-
ent chemical compounds produced may reflect the 
physiological status plants are in. So far, we have only 
been able to include Rubisco amount or activity as an 
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important enzymatic factor in C-fixation, and chloro-
phyll, xanthophylls and other carotenoids, and solu-
ble phenolics as relevant groups of specific metabolic 
compounds (Poorter et  al. 2019, 2022). However, 
there is a wide range of enzymes and compounds that 
could be instructive for the physiological status of 
plants. For the same A. thaliana plants for which we 
showed some gene expression levels, we also meas-
ured various enzymes and metabolites, of which we 
show the capacity of NAD-dependent Malate Dehy-
drogenase (MHD) as an example. MDH, whose activ-
ity is much higher than that of other enzymes of the 
TCA cycle (Gibon et al. 2009), plays a central role in 

metabolism, i.e. in the assimilation of nitrogen (Han-
ning and Heldt 1993), in photorespiration (Journet 
et  al. 1981), but also in cellular redox homeostasis 
(Scheibe 2004; Shameer et  al. 2019). It seems logi-
cal that this activity would increase when increasing 
light intensity, since this generates more metabolic 
activity and growth, but also more reactive oxygen 
species. However, our expectation was not confirmed, 
as enzyme capacities expressed per unit dry mass 
decreased with light levels during growth (Fig. 6b).

Clearly, we need a more holistic understanding of 
changes in capacity and activity of enzyme levels and 
their products. With time, more and more datasets 

Fig. 6   Responses of (a) 
relative mRNA levels 
and (b) the capacity of 
the malate dehydroge-
nase enzyme (MDH) as 
dependent on the daily 
light integral (DLI). Genes 
shown are early light-
induced protein 1 (elip1) 
and 2 (elip2), Rubisco small 
subunit (rbcS), Rubisco 
activase (rca), phototropin 
1 (phot1), and phenylala-
nine ammonia-lyase (pal4). 
All values are expressed 
relative to the total amount 
of mRNA expressed. 
Enzyme capacity of MDH 
is expressed per unit leaf 
fresh mass and dry mass, 
respectively. Data fare for 
Arabidopsis thaliana plants 
grown in a growth chamber 
in pots with a PPFD of 25, 
50, 100, 200, and 500 μmol.
m−2.s−1 for 8 h a day, at a 
day/night temperature of 
20 °C
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become available for an increasing diversity of envi-
ronments and species. A problem of metabolome data 
is that they are almost always expressed semi-quanti-
tatively and making them interoperable via absolute 
quantification remains a considerable challenge (Fer-
reira et al. 2021; Røst et al. 2020).

The basis of normalization for plant processes and 
compounds

As plants or plant organs vary in size, it is common to 
normalize measured rates of physiological processes 
or chemical content by the size of the biological sam-
ple taken. However, there is a hidden problem here. 
Plant biologists studying photosynthesis generally 
consider leaf area as the ‘logical’ basis for normaliza-
tion of photosynthetic and transpiration rates (Lloyd 
et  al. 2013). Eco(physio)logists often express data 
on a dry mass basis, which helps to avoid variation 
due to time-dependent fluctuations in water availabil-
ity, especially in the field. Cell biologists who grow 
their plants generally under controlled conditions 
express their data per unit dry mass, fresh mass or 
chlorophyll, depending on the nature of the study or 
sometimes on the lab’s habits. For example dry mass 
is often used in water stress studies (e.g. Ahmadi and 
Baker 2001), whereas fresh mass or chlorophyll are 
preferred in other cases (e.g. Sicher and Bunce 1997). 
If data for different traits are normalized in different 
ways, then it is complicated to compare them. For 
example, the MDH capacity which did not follow 
our hypothesis when expressed per unit dry mass, 
confirms our hypothesis when data are expressed per 
unit fresh mass (Fig.  6b), simply because the water 
content per unit dry mass decreases strongly with 
increasing DLI (Poorter et  al. 2019). Unfortunately, 
conversion factors are rarely reported in papers, as 
they are often not relevant for the research question 
of interest. However, without knowing the conversion 
factor between leaf area, dry mass, fresh mass and 
chlorophyll for a specific species in a specific experi-
ment at a specific environmental level, these data can-
not be matched with those from other reports, hinder-
ing reuse of data for purposes such as meta-analyses. 
To bridge the ‘cultural’ gaps among the different 
subdisciplines, and allow integration across fields, we 
strongly recommend that all plant biologists report 
the conversion factors among the four variables men-
tioned above as a standard routine in their papers. 

This should not just be a dutiful exercise. They are 
relatively easy to achieve, and there is highly relevant 
insight to be gained from comparing physiological 
rates and amounts of chemical compounds on dif-
ferent bases (McMillen and McClendon 1983; Gar-
nier et al. 1999; Terashima et al. 2005; Poorter et al., 
2014).

Use of dose‑response curves in modeling

Modeling is a great way to integrate knowledge of 
different plant processes and is used advantageously 
to understand and forecast growth and productivity, 
both for crops (Keating et  al. 2003) and worldwide 
vegetation (Keenan et al. 2021). Most of these mod-
els are based on a ‘radiation use efficiency’ (RUE), 
multiplied by the prevailing light intensity and some 
factor depending on temperature, or on Farquhar-Von-
Caemmerer-Berry type of equations to predict photo-
synthesis depending on light intensity and CO2 con-
centration (Boote et al. 2013). However, acclimation 
of plants to different levels of an environmental fac-
tor is generally not an intrinsic part of these simula-
tion models. They do not necessarily form an integral 
part of ecosystem models that focus on global change 
either, even though these models often attain a high 
level of complexity.

How could the present information on dose-
response curves be used advantageously to improve 
plant growth models? We suggest two different 
options, using the light-response of SLA as an exam-
ple. First, acclimation could be explicitly simulated 
using the generalized dose-response curve as we 
derived before. As an illustration we used an old 
crop model (SUCROS; Kropff et al. 1994), and either 
assumed a constant SLA, or allow SLA to acclimate 
to light as derived from the generalized dose-response 
curve of MetaPhenomics (Fig. 7a). For simplicity, we 
only considered plant biomass 40 days after germina-
tion, when plants are still vegetative and assumed a 
constant temperature. We then challenged the model 
with DLI levels between 8 and 50  mol.m−2.d−1, 
admittedly a broader range than most crop plants 
would ever experience outside. For clarity, the data 
of this analysis were normalized for a DLI of 35 mol.
m−2.d−1, a typical light level crops experience under 
field conditions. As shown in Fig.  7b, total vegeta-
tive biomass after 40 days varied strongly with light, 
increasing 220-fold when SLA was kept constant. In 
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contrast, variation was less than 50-fold when incor-
porating the 2-fold change in SLA into the model, 
showing the principle that the acclimation in leaf 
morphology is improving plant C-gain under low-
light conditions, and presumably also plant fitness 
under these conditions. Considerable differences in 
output of a vegetation-climate model were also found 
when the well-known decrease in SLA with increas-
ing atmospheric [CO2] was included in the simula-
tions (Kovenock and Swann 2018).

The second way we see dose-response curves to 
be used advantageously, is in comparing and analyz-
ing the dose-response curves of different variables 
simulated in the model with those found for experi-
mental plants or vegetation. Modelers need to keep 
their models simple and tractable, which makes them 
selective in the processes and detail included in their 
models. Experimentalists often have a different back-
ground, and find it difficult to understand what exactly 
is or is not included in the wide variety of simula-
tion models and what consequences this has for the 

Fig. 7   Comparing the 
dose-response curves as 
found for MetaPhenomics, 
with results from differ-
ent crop models (a-b: 
SUCROS; c-f, GECROS). 
a The two SUCROS simu-
lated scenarios, keeping 
specific leaf area (SLA) 
constant (scenario 1), or 
applying SLA following the 
dose-response curve derived 
in MetaPhenomics (sce-
nario 2). b Simulated total 
dry mass of the crop after 
40 days of growth, scaled 
to 1 at a DLI of 35 mol.
m−2.d−1. c Dose-response 
curve for SLA as output of 
the model GECROS (black 
line), compared to the dose-
response curve observed for 
MetaPhenomics. d Idem for 
root mass fraction (RMF). 
e Idem for leaf nitrogen 
concentration. f Idem or the 
rate of photosynthesis per 
unit leaf area under actual 
light conditions, averaged 
for all leaves in the canopy. 
All MetaPhenomics dose-
response curves are shown 
in orange. For reasons of 
clarity, all trait data in this 
figure were normalized to 
the value observed at a DLI 
of 35 mol.m−2.d−1. Dashed 
lines indicate the scaling 
DLI at the x-axis, and the 
resulting scaled phenotypic 
trait value (=1) in the y 
direction
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output of these models. A model that seeks to incor-
porate some form of acclimation at a tractable level 
is GECROS (Yin and Struik 2017). It includes pho-
tosynthesis and respiration as the main processes for 
growth. Biomass allocation is governed by the sugar-
allocation to shoots and roots that maximizes growth. 
Leaf area expansion at each time step is derived from 
the amount of sugar allocated to leaf growth, but co-
limited by N availability for new growth. Again cal-
culating model output for a wider range of light levels 
than ever anticipated, average SLA responded in a 
manner very similar to what was found in the Meta-
Phenomics analysis (Fig.  7c). The root mass frac-
tion (RMF) in the model increased, as also found for 
experimental plants, but the change was stronger for 
the modeled plants (Fig.  7d). Modeled leaf N con-
centration was constant over a broad range of DLI’s, 
but increased strongly below a DLI of 15  mol.m−2.
d−1 (Fig.  7e). Photosynthesis per unit total leaf area 
was less plastic in the model, which may also be 
because the experiments compiled in MetaPhenomics 
often measure the youngest full-grown and full-light 
exposed leaf, whereas the model considers all leaves 
of a crop. Clearly, GECROS is not able to fully sim-
ulate crop response down to what are very low light 
levels for a crop (< 15 mol.m−2.d−1). However, it is 
able to show acclimation as an intrinsic property of 
the model much the way that plants actually acclimate 
to light. This illustrates that the comparison of model 
output with the dose-response curves from MetaPhe-
nomics may provide a good focal point for communi-
cation between modelers and experimentalists.

Conclusions

a.	 In this paper we have shown the power of gen-
eralized dose-response curves in summarizing 
plant responses to the environment. Using a sys-
tematic approach across all kinds of subdisci-
plines, a quantitative and systematic overview on 
plant responses for many traits can be obtained 
from the literature.

b.	 The same information can be used to assess 
whether functional groups of species do behave 
similarly or differently in their acclimation to a 
given environmental factor.

c.	 Although there are challenges based on differ-
ent ways of normalization, the approach could 

also be advantageously used to describe mRNA, 
enzyme activities or metabolite concentrations. 
Another field of applications is the inclusion of 
the derived dose-response curves into plant mod-
els, or in the communication between model-
ers and experimental biologists. Dose-response 
curves in MetaPhenomics could be exploited as 
a yardstick to guide the future effort of improving 
models.
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