000916825 001__ 916825
000916825 005__ 20230502100730.0
000916825 0247_ $$2doi$$a10.1109/IGARSS46834.2022.9883762
000916825 0247_ $$2Handle$$a2128/33404
000916825 0247_ $$2WOS$$aWOS:000920916602230
000916825 037__ $$aFZJ-2023-00122
000916825 1001_ $$0P:(DE-HGF)0$$aMoreno-Alvarez, Sergio$$b0
000916825 1112_ $$aIGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium$$cKuala Lumpur$$d2022-07-17 - 2022-07-22$$wMalaysia
000916825 245__ $$aOptimizing Distributed Deep Learning in Heterogeneous Computing Platforms for Remote Sensing Data Classification
000916825 260__ $$bIEEE$$c2022
000916825 300__ $$a2726-2729
000916825 3367_ $$2ORCID$$aCONFERENCE_PAPER
000916825 3367_ $$033$$2EndNote$$aConference Paper
000916825 3367_ $$2BibTeX$$aINPROCEEDINGS
000916825 3367_ $$2DRIVER$$aconferenceObject
000916825 3367_ $$2DataCite$$aOutput Types/Conference Paper
000916825 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1672988180_23859
000916825 520__ $$aApplications from Remote Sensing (RS) unveiled unique challenges to Deep Learning (DL) due to the high volume and complexity of their data. On the one hand, deep neural network architectures have the capability to automatically ex-tract informative features from RS data. On the other hand, these models have massive amounts of tunable parameters, requiring high computational capabilities. Distributed DL with data parallelism on High-Performance Computing (HPC) systems have proved necessary in dealing with the demands of DL models. Nevertheless, a single HPC system can be al-ready highly heterogeneous and include different computing resources with uneven processing power. In this context, a standard data parallelism strategy does not partition the data efficiently according to the available computing resources. This paper proposes an alternative approach to compute the gradient, which guarantees that the contribution to the gradient calculation is proportional to the processing speed of each DL model's replica. The experimental results are obtained in a heterogeneous HPC system with RS data and demonstrate that the proposed approach provides a significant training speed up and gain in the global accuracy compared to one of the state-of-the-art distributed DL framework.
000916825 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000916825 536__ $$0G:(EU-Grant)754304$$aDEEP-EST - DEEP - Extreme Scale Technologies (754304)$$c754304$$fH2020-FETHPC-2016$$x1
000916825 588__ $$aDataset connected to CrossRef Conference
000916825 7001_ $$0P:(DE-HGF)0$$aPaoletti, Mercedes E.$$b1
000916825 7001_ $$0P:(DE-HGF)0$$aRico, Juan A.$$b2
000916825 7001_ $$0P:(DE-Juel1)171343$$aCavallaro, Gabriele$$b3$$ufzj
000916825 7001_ $$0P:(DE-HGF)0$$aHaut, Juan M.$$b4
000916825 773__ $$a10.1109/IGARSS46834.2022.9883762
000916825 8564_ $$uhttps://juser.fz-juelich.de/record/916825/files/Sergio_Moreona_Alvarez_Paper_IGARSS2022.pdf$$yOpenAccess
000916825 909CO $$ooai:juser.fz-juelich.de:916825$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000916825 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171343$$aForschungszentrum Jülich$$b3$$kFZJ
000916825 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000916825 9141_ $$y2022
000916825 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000916825 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000916825 980__ $$acontrib
000916825 980__ $$aVDB
000916825 980__ $$aUNRESTRICTED
000916825 980__ $$aI:(DE-Juel1)JSC-20090406
000916825 9801_ $$aFullTexts