001     916825
005     20230502100730.0
024 7 _ |a 10.1109/IGARSS46834.2022.9883762
|2 doi
024 7 _ |a 2128/33404
|2 Handle
024 7 _ |a WOS:000920916602230
|2 WOS
037 _ _ |a FZJ-2023-00122
100 1 _ |a Moreno-Alvarez, Sergio
|0 P:(DE-HGF)0
|b 0
111 2 _ |a IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium
|c Kuala Lumpur
|d 2022-07-17 - 2022-07-22
|w Malaysia
245 _ _ |a Optimizing Distributed Deep Learning in Heterogeneous Computing Platforms for Remote Sensing Data Classification
260 _ _ |c 2022
|b IEEE
300 _ _ |a 2726-2729
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1672988180_23859
|2 PUB:(DE-HGF)
520 _ _ |a Applications from Remote Sensing (RS) unveiled unique challenges to Deep Learning (DL) due to the high volume and complexity of their data. On the one hand, deep neural network architectures have the capability to automatically ex-tract informative features from RS data. On the other hand, these models have massive amounts of tunable parameters, requiring high computational capabilities. Distributed DL with data parallelism on High-Performance Computing (HPC) systems have proved necessary in dealing with the demands of DL models. Nevertheless, a single HPC system can be al-ready highly heterogeneous and include different computing resources with uneven processing power. In this context, a standard data parallelism strategy does not partition the data efficiently according to the available computing resources. This paper proposes an alternative approach to compute the gradient, which guarantees that the contribution to the gradient calculation is proportional to the processing speed of each DL model's replica. The experimental results are obtained in a heterogeneous HPC system with RS data and demonstrate that the proposed approach provides a significant training speed up and gain in the global accuracy compared to one of the state-of-the-art distributed DL framework.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a DEEP-EST - DEEP - Extreme Scale Technologies (754304)
|0 G:(EU-Grant)754304
|c 754304
|f H2020-FETHPC-2016
|x 1
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Paoletti, Mercedes E.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Rico, Juan A.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Cavallaro, Gabriele
|0 P:(DE-Juel1)171343
|b 3
|u fzj
700 1 _ |a Haut, Juan M.
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1109/IGARSS46834.2022.9883762
856 4 _ |u https://juser.fz-juelich.de/record/916825/files/Sergio_Moreona_Alvarez_Paper_IGARSS2022.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:916825
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)171343
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2022
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21