000916848 001__ 916848
000916848 005__ 20230123101911.0
000916848 0247_ $$2arXiv$$aarXiv:2103.03577
000916848 0247_ $$2Handle$$a2128/33391
000916848 037__ $$aFZJ-2023-00142
000916848 088__ $$2arXiv$$aarXiv:2103.03577
000916848 1001_ $$0P:(DE-Juel1)168366$$aRiwar, Roman-Pascal$$b0$$ufzj
000916848 245__ $$aCircuit quantization with time-dependent magnetic fields for realistic geometries
000916848 260__ $$c2022
000916848 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1672917959_23969
000916848 3367_ $$2ORCID$$aWORKING_PAPER
000916848 3367_ $$028$$2EndNote$$aElectronic Article
000916848 3367_ $$2DRIVER$$apreprint
000916848 3367_ $$2BibTeX$$aARTICLE
000916848 3367_ $$2DataCite$$aOutput Types/Working Paper
000916848 500__ $$a21 pages, 4 figures
000916848 520__ $$aQuantum circuit theory has become a powerful and indispensable tool to predict the dynamics of superconducting circuits. Surprisingly however, the question of how to properly account for a time-dependent driving via external magnetic fields has hardly been addressed so far. Here, we derive a general recipe to construct a low-energy Hamiltonian, taking as input only the circuit geometry and the solution of the external magnetic fields. A gauge fixing procedure for the scalar and vector potentials is given which assures that time-varying magnetic fluxes make contributions only to the potential function in the Schr\'odinger equation. Our proposed procedure is valid for continuum geometries and thus significantly generalizes previous efforts, which were based on discrete circuits. We study some implications of our results for the concrete example of a parallel-plate SQUID circuit. We show that if we insist on representing the response of this SQUID with individual, discrete capacitances associated with each individual Josephson junction, this is only possible if we permit the individual capacitance values to be negative, time-dependent or even momentarily singular. Finally, we provide some experimentally testable predictions, such as a strong enhancement of the qubit relaxation rates arising from the effective negative capacitances, and the emergence of a Berry phase due to time dependence of these capacitances.
000916848 536__ $$0G:(DE-HGF)POF4-5224$$a5224 - Quantum Networking (POF4-522)$$cPOF4-522$$fPOF IV$$x0
000916848 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x1
000916848 588__ $$aDataset connected to arXivarXiv
000916848 7001_ $$0P:(DE-Juel1)143759$$aDiVincenzo, David$$b1$$eCorresponding author
000916848 8564_ $$uhttps://juser.fz-juelich.de/record/916848/files/2103.03577.pdf$$yOpenAccess
000916848 909CO $$ooai:juser.fz-juelich.de:916848$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000916848 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168366$$aForschungszentrum Jülich$$b0$$kFZJ
000916848 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143759$$aForschungszentrum Jülich$$b1$$kFZJ
000916848 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5224$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
000916848 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x1
000916848 9141_ $$y2022
000916848 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000916848 920__ $$lyes
000916848 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x0
000916848 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x1
000916848 980__ $$apreprint
000916848 980__ $$aVDB
000916848 980__ $$aUNRESTRICTED
000916848 980__ $$aI:(DE-Juel1)PGI-11-20170113
000916848 980__ $$aI:(DE-Juel1)PGI-2-20110106
000916848 9801_ $$aFullTexts