000916861 001__ 916861
000916861 005__ 20230123101911.0
000916861 0247_ $$2Handle$$a2128/33403
000916861 037__ $$aFZJ-2023-00153
000916861 041__ $$aEnglish
000916861 1001_ $$0P:(DE-Juel1)176997$$aMehta, Vrinda$$b0$$eCorresponding author
000916861 1112_ $$aInternational workshop of many-body systems out of equilibrium: recent advances and future directions$$cLogar Valley$$d2022-09-19 - 2022-09-23$$wSlovenia
000916861 245__ $$aOn the hardness of quadratic unconstrained binary optimization problems
000916861 260__ $$c2022
000916861 3367_ $$033$$2EndNote$$aConference Paper
000916861 3367_ $$2BibTeX$$aINPROCEEDINGS
000916861 3367_ $$2DRIVER$$aconferenceObject
000916861 3367_ $$2ORCID$$aCONFERENCE_POSTER
000916861 3367_ $$2DataCite$$aOutput Types/Conference Poster
000916861 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1672925716_21277$$xOther
000916861 520__ $$aWe use exact enumeration to characterize the solutions of quadratic unconstrained binary optimization problems of less than 21 variables in terms of their distributions of Hamming distances to close-by solutions. We also perform experiments with the D-Wave Advantage 5.1 quantum annealer, solving many instances of up to 170-variable, quadratic unconstrained binary optimization problems. Our results demonstrate that the exponents characterizing the success probability of a D-Wave annealer to solve a QUBO correlate very well with the predictions based on the Hamming distance distributions computed for small problem instances.
000916861 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000916861 7001_ $$0P:(DE-Juel1)144355$$aJin, Fengping$$b1
000916861 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, Kristel$$b2
000916861 7001_ $$0P:(DE-Juel1)179169$$aDe Raedt, Hans$$b3$$ufzj
000916861 8564_ $$uhttps://juser.fz-juelich.de/record/916861/files/QUBO_V.pdf$$yOpenAccess
000916861 909CO $$ooai:juser.fz-juelich.de:916861$$pdriver$$pVDB$$popen_access$$popenaire
000916861 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176997$$aForschungszentrum Jülich$$b0$$kFZJ
000916861 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144355$$aForschungszentrum Jülich$$b1$$kFZJ
000916861 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b2$$kFZJ
000916861 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179169$$aForschungszentrum Jülich$$b3$$kFZJ
000916861 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000916861 9141_ $$y2022
000916861 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000916861 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000916861 9801_ $$aFullTexts
000916861 980__ $$aposter
000916861 980__ $$aVDB
000916861 980__ $$aUNRESTRICTED
000916861 980__ $$aI:(DE-Juel1)JSC-20090406