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QUBO problems

Many discrete optimization problems can be reformulated as QUBO problems with the
following cost function [1]

Hamming distance

The Hamming distance between the low-lying energy states and

the ground state is calculated by exact enumeration for small

C(Xq, oy Xy) = z Qi XX (1) systems. Representative results for N = 20 problem taken from
L,J

, the three problem classes are shown below.
where x; = 0,1and Q; ; = @;; is a symmetric N X N matrix.
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A 2SAT problem is specified by N binary variables x; and a conjunction of M clauses
defining a binary-valued cost function
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where the literal L, ; stands for either x;4 jy or its negation X;, jy fora = 1, ..., M and o LI T
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The corresponding formulation of Ising Hamiltonian is given by [2]
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Fig. 1 Top left: 2SAT. Top right: RAN. Bottom: REG.
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where g, ; = +1(—1)if L, ; stands for x; (x;) and hosar (51, S1) = (S5 — 1)(S,,, — 1).

Fully-connected spin glass (RAN) Quantum annealing experiments
The spin glass model is defined by the Hamiltonian Eq. (2). The values of all the Large problems up to N = 170 are created and submitted to the
parameters J; ;’s and h;’s are assigned by uniform random numbers in the range D-Wave Advantage 5.1 quantum annealer located at JSC, FZJ,
|—1,1]. Computing the ground state configuration of the spin glass model is, in general, Germany. The scaling of the most interesting measure, i.e., the
very hard and is proven to be NP-hard. success probability of the ground state, as a function of the

problem size, is shown below.
Fully-connected regular spin glass (REG)
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QUBO22:
A computer code that uses GPUs and/or CPUs to solve QUBOs, PUBOs, and Exact cover
problems [3]. QUBO22 simply enumerates all 2"V possible configurations while keeping o - .
track of those that yield the lowest, next to lowest cost. QUB0O22 obviously always finds R I L p— . I °
the true ground state. With the current computer resources, QUBO22 can be applied to 5107 | s
solve applications with problem size up to N = 58. L 5
Heuristic methods: ;1 T :
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For larger problems, heuristic methods of gbsolv and D-Wave Hybrid solver provided by o7 | .
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D-Wave are used to find the lowest states. N N
D-Wave Advantage 5.1 quantum annealer:

A real quantum annealing device is used to solve all the problems mentioned above
[4]. The success probability of finding the ground state is calculated by using the state
obtained by gbsolv.

Fig. 2 Top left: 2SAT. Top right: RAN. Bottom Left: REG.
Bottom right: REG, Embedding.

Summary and outlook

We performed spectral analysis and quantum annealing experiments on three classes of QUBO problems. Our results demonstrate that the exponents
characterizing the scaling of the success probability of the D-Wave annealer to solve a QUBO correlate very well with the predictions based on the
Hamming distance computed for small QUBO instances.

It is of interest to use simulated annealing for solving the three sets of problems to study if the Hamming distance distributions for small problem instances
also predict the effectiveness of simulated annealing.

References:

1] A. Lucas, Front Phys 2, 5 (2014) Acknowledgements

21T Neuhaus arXiv:1412.5361 (2014) The authors gratefully acknowledge support from the project JUNIQ which has received funding from the German
- ’ Federal Ministry of Education and Research (BMBF) and the Ministry of Culture and Science of the state of North
3] V. Mehta et al, Front. Phys. 10, 956882 (2022)
4

Rhine-Westphalia and from the Gauss Centre for Supercomputing eV for funding this project by providing
JUNIQ, https://juniq.fz-juelich.de/ computing time on the GCS Supercomputer JUWELS at Jilich Supercomputing Centre.

Mitglied der Helmholtz-Gemeinschaft



