000916867 001__ 916867
000916867 005__ 20230224084251.0
000916867 0247_ $$2doi$$a10.1007/s00259-022-05879-6
000916867 0247_ $$2ISSN$$a1619-7070
000916867 0247_ $$2ISSN$$a0340-6997
000916867 0247_ $$2ISSN$$a1432-105X
000916867 0247_ $$2ISSN$$a1619-7089
000916867 0247_ $$2Handle$$a2128/33572
000916867 0247_ $$2pmid$$a35831715
000916867 0247_ $$2WOS$$aWOS:000825739800002
000916867 037__ $$aFZJ-2023-00159
000916867 082__ $$a610
000916867 1001_ $$0P:(DE-HGF)0$$aDoering, E.$$b0$$eCorresponding author
000916867 245__ $$aIntroducing a gatekeeping system for amyloid status assessment in mild cognitive impairment
000916867 260__ $$aHeidelberg [u.a.]$$bSpringer-Verl.$$c2022
000916867 3367_ $$2DRIVER$$aarticle
000916867 3367_ $$2DataCite$$aOutput Types/Journal article
000916867 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1673609637_32709
000916867 3367_ $$2BibTeX$$aARTICLE
000916867 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000916867 3367_ $$00$$2EndNote$$aJournal Article
000916867 520__ $$aBackground: In patients with mild cognitive impairment (MCI), enhanced cerebral amyloid-β plaque burden is a high-risk factor to develop dementia with Alzheimer's disease (AD). Not all patients have immediate access to the assessment of amyloid status (A-status) via gold standard methods. It may therefore be of interest to find suitable biomarkers to preselect patients benefitting most from additional workup of the A-status. In this study, we propose a machine learning-based gatekeeping system for the prediction of A-status on the grounds of pre-existing information on APOE-genotype 18F-FDG PET, age, and sex.Methods: Three hundred and forty-two MCI patients were used to train different machine learning classifiers to predict A-status majority classes among APOE-ε4 non-carriers (APOE4-nc; majority class: amyloid negative (Aβ-)) and carriers (APOE4-c; majority class: amyloid positive (Aβ +)) from 18F-FDG-PET, age, and sex. Classifiers were tested on two different datasets. Finally, frequencies of progression to dementia were compared between gold standard and predicted A-status.Results: Aβ- in APOE4-nc and Aβ + in APOE4-c were predicted with a precision of 87% and a recall of 79% and 51%, respectively. Predicted A-status and gold standard A-status were at least equally indicative of risk of progression to dementia.Conclusion: We developed an algorithm allowing approximation of A-status in MCI with good reliability using APOE-genotype, 18F-FDG PET, age, and sex information. The algorithm could enable better estimation of individual risk for developing AD based on existing biomarker information, and support efficient selection of patients who would benefit most from further etiological clarification. Further potential utility in clinical routine and clinical trials is discussed.Keywords: Machine learning; Neurodegeneration.
000916867 536__ $$0G:(DE-HGF)POF4-5254$$a5254 - Neuroscientific Data Analytics and AI (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000916867 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x1
000916867 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000916867 7001_ $$0P:(DE-Juel1)178642$$aHönig, Merle$$b1
000916867 7001_ $$0P:(DE-Juel1)166265$$aBischof, G. N.$$b2
000916867 7001_ $$0P:(DE-HGF)0$$aBohn, K. P.$$b3
000916867 7001_ $$0P:(DE-HGF)0$$aEllingsen, L. M.$$b4
000916867 7001_ $$0P:(DE-Juel1)169110$$avan Eimeren, T.$$b5
000916867 7001_ $$0P:(DE-Juel1)177611$$aDrzezga, A.$$b6
000916867 773__ $$0PERI:(DE-600)2098375-X$$a10.1007/s00259-022-05879-6$$gVol. 49, no. 13, p. 4478 - 4489$$n13$$p4478 - 4489$$tEuropean journal of nuclear medicine and molecular imaging$$v49$$x1619-7070$$y2022
000916867 8564_ $$uhttps://juser.fz-juelich.de/record/916867/files/s00259-022-05879-6.pdf$$yOpenAccess
000916867 909CO $$ooai:juser.fz-juelich.de:916867$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000916867 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178642$$aForschungszentrum Jülich$$b1$$kFZJ
000916867 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166265$$aForschungszentrum Jülich$$b2$$kFZJ
000916867 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177611$$aForschungszentrum Jülich$$b6$$kFZJ
000916867 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5254$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000916867 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x1
000916867 9141_ $$y2022
000916867 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-23
000916867 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-23
000916867 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-23
000916867 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000916867 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-23
000916867 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR J NUCL MED MOL I : 2021$$d2022-11-23
000916867 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bEUR J NUCL MED MOL I : 2021$$d2022-11-23
000916867 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-23
000916867 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2022-11-23$$wger
000916867 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-23
000916867 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000916867 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-23
000916867 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-23
000916867 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2022-11-23
000916867 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-23
000916867 920__ $$lyes
000916867 9201_ $$0I:(DE-Juel1)INM-2-20090406$$kINM-2$$lMolekulare Organisation des Gehirns$$x0
000916867 980__ $$ajournal
000916867 980__ $$aVDB
000916867 980__ $$aUNRESTRICTED
000916867 980__ $$aI:(DE-Juel1)INM-2-20090406
000916867 9801_ $$aFullTexts