001     916869
005     20230224084247.0
024 7 _ |a 10.1007/s12264-022-00820-1
|2 doi
024 7 _ |a 1673-7067
|2 ISSN
024 7 _ |a 1995-8218
|2 ISSN
024 7 _ |a 35092576
|2 pmid
024 7 _ |a WOS:000749010200001
|2 WOS
037 _ _ |a FZJ-2023-00161
082 _ _ |a 570
100 1 _ |a Chu, Congying
|0 P:(DE-Juel1)180306
|b 0
|e Corresponding author
245 _ _ |a The SACT Template: A Human Brain Diffusion Tensor Template for School-age Children
260 _ _ |a Beijing
|c 2022
|b Tongfang Knowledge Network Technology Co., Ltd.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1673846119_28146
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Bitte Post-print ergänzenLiegt aktuell leider nicht vor; wird nachgereicht!
520 _ _ |a School-age children are in a specific development stage corresponding to juvenility, when the white matter of the brain experiences ongoing maturation. Diffusion-weighted magnetic resonance imaging (DWI), especially diffusion tensor imaging (DTI), is extensively used to characterize the maturation by assessing white matter properties in vivo. In the analysis of DWI data, spatial normalization is crucial for conducting inter-subject analyses or linking the individual space with the reference space. Using tensor-based registration with an appropriate diffusion tensor template presents high accuracy regarding spatial normalization. However, there is a lack of a standardized diffusion tensor template dedicated to school-age children with ongoing brain development. Here, we established the school-age children diffusion tensor (SACT) template by optimizing tensor reorientation on high-quality DTI data from a large sample of cognitively normal participants aged 6-12 years. With an age-balanced design, the SACT template represented the entire age range well by showing high similarity to the age-specific templates. Compared with the tensor template of adults, the SACT template revealed significantly higher spatial normalization accuracy and inter-subject coherence upon evaluation of subjects in two different datasets of school-age children. A practical application regarding the age associations with the normalized DTI-derived data was conducted to further compare the SACT template and the adult template. Although similar spatial patterns were found, the SACT template showed significant effects on the distributions of the statistical results, which may be related to the performance of spatial normalization. Looking forward, the SACT template could contribute to future studies of white matter development in both healthy and clinical populations. The SACT template is publicly available now ( https://figshare.com/articles/dataset/SACT_template/14071283 ).Keywords: Diffusion tensor template; Diffusion-weighted MRI; School-age children; Spatial normalization.
536 _ _ |a 5253 - Neuroimaging (POF4-525)
|0 G:(DE-HGF)POF4-5253
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Guan, Haoran
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Xie, Sangma
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Wang, Yanpei
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Luo, Jie
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Zhao, Gai
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Pan, Zhiying
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Hu, Mingming
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Men, Weiwei
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Tan, Shuping
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Gao, Jia-Hong
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Qin, Shaozheng
|0 P:(DE-HGF)0
|b 11
700 1 _ |a He, Yong
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Fan, Lingzhong
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Dong, Qi
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Tao, Sha
|0 P:(DE-HGF)0
|b 15
773 _ _ |a 10.1007/s12264-022-00820-1
|g Vol. 38, no. 6, p. 607 - 621
|0 PERI:(DE-600)2421623-9
|n 6
|p 607 - 621
|t Neuroscience bulletin
|v 38
|y 2022
|x 1673-7067
856 4 _ |u https://juser.fz-juelich.de/record/916869/files/s12264-022-00820-1.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:916869
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180306
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5253
|x 0
914 1 _ |y 2022
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-12
|w ger
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2022-11-12
|w ger
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2022-11-12
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-12
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROSCI BULL : 2021
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-12
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEUROSCI BULL : 2021
|d 2022-11-12
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-2-20090406
|k INM-2
|l Molekulare Organisation des Gehirns
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21