000916870 001__ 916870 000916870 005__ 20230301074239.0 000916870 0247_ $$2doi$$a10.1007/s12035-022-02793-8 000916870 0247_ $$2ISSN$$a0893-7648 000916870 0247_ $$2ISSN$$a1559-1182 000916870 0247_ $$2Handle$$a2128/33574 000916870 0247_ $$2pmid$$a35312967 000916870 0247_ $$2WOS$$aWOS:000771549600001 000916870 037__ $$aFZJ-2023-00162 000916870 082__ $$a570 000916870 1001_ $$0P:(DE-Juel1)180330$$aEndepols, Heike$$b0 000916870 245__ $$aAssessment of the In Vivo Relationship Between Cerebral Hypometabolism, Tau Deposition, TSPO Expression, and Synaptic Density in a Tauopathy Mouse Model: a Multi-tracer PET Study 000916870 260__ $$aTotowa, NJ$$bHumana Press$$c2022 000916870 3367_ $$2DRIVER$$aarticle 000916870 3367_ $$2DataCite$$aOutput Types/Journal article 000916870 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1673610183_32440 000916870 3367_ $$2BibTeX$$aARTICLE 000916870 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000916870 3367_ $$00$$2EndNote$$aJournal Article 000916870 520__ $$aCerebral glucose hypometabolism is a typical hallmark of Alzheimer's disease (AD), usually associated with ongoing neurodegeneration and neuronal dysfunction. However, underlying pathological processes are not fully understood and reproducibility in animal models is not well established. The aim of the present study was to investigate the regional interrelation of glucose hypometabolism measured by [18F]FDG positron emission tomography (PET) with various molecular targets of AD pathophysiology using the PET tracers [18F]PI-2620 for tau deposition, [18F]DPA-714 for TSPO expression associated with neuroinflammation, and [18F]UCB-H for synaptic density in a transgenic tauopathy mouse model. Seven-month-old rTg4510 mice (n = 8) and non-transgenic littermates (n = 8) were examined in a small animal PET scanner with the tracers listed above. Hypometabolism was observed throughout the forebrain of rTg4510 mice. Tau pathology, increased TSPO expression, and synaptic loss were co-localized in the cortex and hippocampus and correlated with hypometabolism. In the thalamus, however, hypometabolism occurred in the absence of tau-related pathology. Thus, cerebral hypometabolism was associated with two regionally distinct forms of molecular pathology: (1) characteristic neuropathology of the Alzheimer-type including synaptic degeneration and neuroinflammation co-localized with tau deposition in the cerebral cortex, and (2) pathological changes in the thalamus in the absence of other markers of AD pathophysiology, possibly reflecting downstream or remote adaptive processes which may affect functional connectivity. Our study demonstrates the feasibility of a multitracer approach to explore complex interactions of distinct AD-pathomechanisms in vivo in a small animal model. The observations demonstrate that multiple, spatially heterogeneous pathomechanisms can contribute to hypometabolism observed in AD mouse models and they motivate future longitudinal studies as well as the investigation of possibly comparable pathomechanisms in human patients.Keywords: Alzheimer’s disease; Cerebral hypometabolism; Microglial activation; Neuroinflammation; Small animal PET; Synaptic density; Tau. 000916870 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0 000916870 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x1 000916870 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000916870 7001_ $$00000-0001-7157-4421$$aAnglada-Huguet, Marta$$b1 000916870 7001_ $$00000-0003-4655-4829$$aMandelkow, Eckhard$$b2 000916870 7001_ $$00000-0002-7976-2205$$aSchmidt, Yannick$$b3 000916870 7001_ $$0P:(DE-Juel1)169356$$aKrapf, Philipp$$b4 000916870 7001_ $$0P:(DE-Juel1)176188$$aZlatopolskiy, Boris D.$$b5 000916870 7001_ $$0P:(DE-Juel1)166419$$aNeumaier, Bernd$$b6$$eCorresponding author 000916870 7001_ $$00000-0002-7715-4038$$aMandelkow, Eva-Maria$$b7 000916870 7001_ $$0P:(DE-Juel1)177611$$aDrzezga, Alexander$$b8 000916870 773__ $$0PERI:(DE-600)2079384-4$$a10.1007/s12035-022-02793-8$$gVol. 59, no. 6, p. 3402 - 3413$$n6$$p3402 - 3413$$tMolecular neurobiology$$v59$$x0893-7648$$y2022 000916870 8564_ $$uhttps://juser.fz-juelich.de/record/916870/files/s12035-022-02793-8.pdf$$yOpenAccess 000916870 8767_ $$d2022-01-31$$eHybrid-OA$$jDEAL 000916870 909CO $$ooai:juser.fz-juelich.de:916870$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire$$qOpenAPC 000916870 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180330$$aForschungszentrum Jülich$$b0$$kFZJ 000916870 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169356$$aForschungszentrum Jülich$$b4$$kFZJ 000916870 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166419$$aForschungszentrum Jülich$$b6$$kFZJ 000916870 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177611$$aForschungszentrum Jülich$$b8$$kFZJ 000916870 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0 000916870 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x1 000916870 9141_ $$y2022 000916870 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-22 000916870 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-22 000916870 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-22 000916870 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-22 000916870 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000916870 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMOL NEUROBIOL : 2021$$d2022-11-22 000916870 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-22 000916870 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2022-11-22$$wger 000916870 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-22 000916870 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000916870 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bMOL NEUROBIOL : 2021$$d2022-11-22 000916870 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-22 000916870 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-22 000916870 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set 000916870 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding 000916870 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten 000916870 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020 000916870 920__ $$lyes 000916870 9201_ $$0I:(DE-Juel1)INM-2-20090406$$kINM-2$$lMolekulare Organisation des Gehirns$$x0 000916870 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x1 000916870 9801_ $$aFullTexts 000916870 980__ $$ajournal 000916870 980__ $$aVDB 000916870 980__ $$aUNRESTRICTED 000916870 980__ $$aI:(DE-Juel1)INM-2-20090406 000916870 980__ $$aI:(DE-Juel1)INM-5-20090406 000916870 980__ $$aAPC