000916924 001__ 916924
000916924 005__ 20250129092507.0
000916924 037__ $$aFZJ-2023-00192
000916924 041__ $$aEnglish
000916924 1001_ $$0P:(DE-Juel1)174088$$aOtten, R.$$b0$$eCorresponding author$$ufzj
000916924 1112_ $$a2022 29th IEEE International Conference on Electronics, Circuits and Systems (ICECS)$$cGlasgow$$d2022-10-24 - 2022-10-26$$gICECS2022$$wUnited Kingdom
000916924 245__ $$aQubit Bias using a CMOS DAC at mK Temperatures
000916924 260__ $$bIEEE$$c2022
000916924 300__ $$a1-4
000916924 3367_ $$2ORCID$$aCONFERENCE_PAPER
000916924 3367_ $$033$$2EndNote$$aConference Paper
000916924 3367_ $$2BibTeX$$aINPROCEEDINGS
000916924 3367_ $$2DRIVER$$aconferenceObject
000916924 3367_ $$2DataCite$$aOutput Types/Conference Paper
000916924 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1673537142_10257
000916924 520__ $$aScaling up a quantum processor to tackle real-world problems requires qubit numbers in the millions. Scalable semiconductor-based architectures have been proposed, many of them relying on integrated control instead of room-temperature electronics. However, it has not yet been shown that this can be achieved. For developing a high-density, low-cost wiring solution, it is highly advantageous for the electronics to be placed at the same temperature as the qubit chip. Therefore, tight integration of the qubit chip with ultra low power complemen-tary metal-oxide-semiconductor (CMOS) electronics presents a promising route. We demonstrate DC biasing qubit electrodes using a custom-designed 65nm CMOS capacitive digital-to-analog converter (DAC) operating on the mixing chamber of a dilution refrigerator below 45 mK. Our chip features a complete proof of principle solution including interface, DAC memory and logic, the capacitive DAC, and sample-and-hold structures to provide voltages for multiple qubit gates. The bias- DAC is combined with the qubit using a silicon interposer chip, enabling flexible routing and tight integration. Voltage stability, noise performance, and temperature are benchmarked using the qubit chip. Our results indicate that qubit bias at cryogenic temperatures with a power consumption of 4 n W /ch is feasible with this approach. They validate the potential of very low power qubit biasing using highly integrated circuits whose connectivity requirements do not increase with the number of qubits.
000916924 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
000916924 536__ $$0G:(DE-Juel1)BMBF-13N16149$$aBMBF-13N16149 - QSolid (BMBF-13N16149)$$cBMBF-13N16149$$x1
000916924 588__ $$aDataset connected to CrossRef Conference
000916924 7001_ $$0P:(DE-Juel1)180854$$aSchreckenberg, Lea$$b1$$ufzj
000916924 7001_ $$0P:(DE-Juel1)171680$$aVliex, P.$$b2$$ufzj
000916924 7001_ $$0P:(DE-HGF)0$$aRitzmann, J.$$b3
000916924 7001_ $$0P:(DE-HGF)0$$aLudwig, A.$$b4
000916924 7001_ $$0P:(DE-HGF)0$$aWieck, A. D.$$b5
000916924 7001_ $$0P:(DE-Juel1)172019$$aBluhm, H.$$b6$$ufzj
000916924 8564_ $$uhttps://ieeexplore.ieee.org/document/9971043
000916924 8564_ $$uhttps://juser.fz-juelich.de/record/916924/files/Paper.pdf$$yRestricted
000916924 909CO $$ooai:juser.fz-juelich.de:916924$$pVDB
000916924 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174088$$aForschungszentrum Jülich$$b0$$kFZJ
000916924 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180854$$aForschungszentrum Jülich$$b1$$kFZJ
000916924 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171680$$aForschungszentrum Jülich$$b2$$kFZJ
000916924 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b3$$kExtern
000916924 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b4$$kExtern
000916924 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b5$$kExtern
000916924 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172019$$aForschungszentrum Jülich$$b6$$kFZJ
000916924 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
000916924 9141_ $$y2022
000916924 920__ $$lyes
000916924 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x0
000916924 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x1
000916924 980__ $$acontrib
000916924 980__ $$aVDB
000916924 980__ $$aI:(DE-Juel1)PGI-11-20170113
000916924 980__ $$aI:(DE-Juel1)ZEA-2-20090406
000916924 980__ $$aUNRESTRICTED
000916924 981__ $$aI:(DE-Juel1)PGI-4-20110106