000916926 001__ 916926
000916926 005__ 20250129092507.0
000916926 0247_ $$2Handle$$a2128/33490
000916926 037__ $$aFZJ-2023-00194
000916926 041__ $$aEnglish
000916926 1001_ $$0P:(DE-Juel1)174088$$aOtten, Rene$$b0$$eCorresponding author
000916926 1112_ $$aAPS March Meeting 2022$$cChicago$$d2022-03-14 - 2022-03-18$$wUSA
000916926 245__ $$aQubit control using a CMOS DAC at mK temperatures
000916926 260__ $$c2022
000916926 3367_ $$033$$2EndNote$$aConference Paper
000916926 3367_ $$2DataCite$$aOther
000916926 3367_ $$2BibTeX$$aINPROCEEDINGS
000916926 3367_ $$2DRIVER$$aconferenceObject
000916926 3367_ $$2ORCID$$aLECTURE_SPEECH
000916926 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1673508252_11434$$xAfter Call
000916926 502__ $$cRWTH Aachen University
000916926 520__ $$aScaling up a quantum processor to tackle real-world problems requires qubit numbers in the millions. Scaleable semiconductor-based architectures have been proposed, many of them relying on integrated control instead of room-temperature electronics. However, it has not yet been shown that this can be achieved. For developing a high-density, low-cost wiring solution, it is highly advantageous for the electronics to be placed at the same temperature as the qubit chip. Therefore, tight integration of the qubit chip with ultra low power CMOS electronics presents a promising route. We demonstrate DC biasing qubit electrodes using a custom-designed 65nm CMOS capacitive DAC operating below 100mK [1]. Our chip features a complete proof of principle solution including interface, DAC memory and logic, the capacitive DAC, and sample-and-hold structures to provide voltages for multiple qubit gates. The bias DAC is combined with the qubit using a silicon interposer chip, enabling flexible routing and tight integration. Voltage stability, noise performance, and temperature are benchmarked using the qubit chip. Our results validate the potential of very low power qubit biasing using highly integrated circuits.[1] P. Vliex et al., IEEE Solid-State Circuits Letters, vol. 3, pp. 218-221, 2020
000916926 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
000916926 536__ $$0G:(DE-Juel1)BMBF-13N16149$$aBMBF-13N16149 - QSolid (BMBF-13N16149)$$cBMBF-13N16149$$x1
000916926 7001_ $$0P:(DE-Juel1)180854$$aSchreckenberg, Lea$$b1
000916926 7001_ $$0P:(DE-Juel1)171680$$aVliex, Patrick$$b2
000916926 7001_ $$0P:(DE-HGF)0$$aRitzmann, Julian$$b3
000916926 7001_ $$0P:(DE-HGF)0$$aLudwig, Arne$$b4
000916926 7001_ $$0P:(DE-HGF)0$$aWieck, Andreas D.$$b5
000916926 7001_ $$0P:(DE-Juel1)172019$$aBluhm, Hendrik$$b6
000916926 8564_ $$uhttps://juser.fz-juelich.de/record/916926/files/Slides.pdf$$yOpenAccess
000916926 909CO $$ooai:juser.fz-juelich.de:916926$$pdriver$$pVDB$$popen_access$$popenaire
000916926 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174088$$aForschungszentrum Jülich$$b0$$kFZJ
000916926 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180854$$aForschungszentrum Jülich$$b1$$kFZJ
000916926 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171680$$aForschungszentrum Jülich$$b2$$kFZJ
000916926 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b3$$kExtern
000916926 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b4$$kExtern
000916926 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b5$$kExtern
000916926 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172019$$aForschungszentrum Jülich$$b6$$kFZJ
000916926 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
000916926 9141_ $$y2022
000916926 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000916926 920__ $$lyes
000916926 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x0
000916926 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x1
000916926 9801_ $$aFullTexts
000916926 980__ $$aconf
000916926 980__ $$aVDB
000916926 980__ $$aUNRESTRICTED
000916926 980__ $$aI:(DE-Juel1)PGI-11-20170113
000916926 980__ $$aI:(DE-Juel1)ZEA-2-20090406
000916926 981__ $$aI:(DE-Juel1)PGI-4-20110106