001     916926
005     20250129092507.0
024 7 _ |a 2128/33490
|2 Handle
037 _ _ |a FZJ-2023-00194
041 _ _ |a English
100 1 _ |a Otten, Rene
|0 P:(DE-Juel1)174088
|b 0
|e Corresponding author
111 2 _ |a APS March Meeting 2022
|c Chicago
|d 2022-03-14 - 2022-03-18
|w USA
245 _ _ |a Qubit control using a CMOS DAC at mK temperatures
260 _ _ |c 2022
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1673508252_11434
|2 PUB:(DE-HGF)
|x After Call
502 _ _ |c RWTH Aachen University
520 _ _ |a Scaling up a quantum processor to tackle real-world problems requires qubit numbers in the millions. Scaleable semiconductor-based architectures have been proposed, many of them relying on integrated control instead of room-temperature electronics. However, it has not yet been shown that this can be achieved. For developing a high-density, low-cost wiring solution, it is highly advantageous for the electronics to be placed at the same temperature as the qubit chip. Therefore, tight integration of the qubit chip with ultra low power CMOS electronics presents a promising route. We demonstrate DC biasing qubit electrodes using a custom-designed 65nm CMOS capacitive DAC operating below 100mK [1]. Our chip features a complete proof of principle solution including interface, DAC memory and logic, the capacitive DAC, and sample-and-hold structures to provide voltages for multiple qubit gates. The bias DAC is combined with the qubit using a silicon interposer chip, enabling flexible routing and tight integration. Voltage stability, noise performance, and temperature are benchmarked using the qubit chip. Our results validate the potential of very low power qubit biasing using highly integrated circuits.[1] P. Vliex et al., IEEE Solid-State Circuits Letters, vol. 3, pp. 218-221, 2020
536 _ _ |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)
|0 G:(DE-HGF)POF4-5221
|c POF4-522
|f POF IV
|x 0
536 _ _ |a BMBF-13N16149 - QSolid (BMBF-13N16149)
|0 G:(DE-Juel1)BMBF-13N16149
|c BMBF-13N16149
|x 1
700 1 _ |a Schreckenberg, Lea
|0 P:(DE-Juel1)180854
|b 1
700 1 _ |a Vliex, Patrick
|0 P:(DE-Juel1)171680
|b 2
700 1 _ |a Ritzmann, Julian
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Ludwig, Arne
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Wieck, Andreas D.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Bluhm, Hendrik
|0 P:(DE-Juel1)172019
|b 6
856 4 _ |u https://juser.fz-juelich.de/record/916926/files/Slides.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:916926
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)174088
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)180854
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)171680
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)172019
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5221
|x 0
914 1 _ |y 2022
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-11-20170113
|k PGI-11
|l JARA Institut Quanteninformation
|x 0
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 1
980 1 _ |a FullTexts
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-11-20170113
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
981 _ _ |a I:(DE-Juel1)PGI-4-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21