000916951 001__ 916951
000916951 005__ 20240619092107.0
000916951 0247_ $$2doi$$a10.1021/acs.jpcc.2c05380
000916951 0247_ $$2ISSN$$a1932-7447
000916951 0247_ $$2ISSN$$a1932-7455
000916951 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-00217
000916951 0247_ $$2WOS$$aWOS:000895511200001
000916951 037__ $$aFZJ-2023-00217
000916951 082__ $$a530
000916951 1001_ $$0P:(DE-Juel1)180588$$aFokina, Vladislava$$b0$$ufzj
000916951 245__ $$aSize Control of Iron Oxide Nanoparticles Synthesized by Thermal Decomposition Methods
000916951 260__ $$aWashington, DC$$bSoc.$$c2022
000916951 3367_ $$2DRIVER$$aarticle
000916951 3367_ $$2DataCite$$aOutput Types/Journal article
000916951 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1710927159_25318
000916951 3367_ $$2BibTeX$$aARTICLE
000916951 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000916951 3367_ $$00$$2EndNote$$aJournal Article
000916951 520__ $$aThe controlled synthesis of superparamagnetic iron oxide nanoparticles is crucial for a variety of biomedical applications. Among different synthesis routes thermal precursor decomposition methods are the most versatile, yielding monodisperse nanoparticles on the multi-gram scale. Recent in situ kinetic studies of the nucleation and growth processes during thermal decomposition routes revealed non-classical nucleation and growth paths involving amorphous precursor phases and aggregative growth steps. With the knowledge of this kinetic mechanism we systematically examined a range of different iron oxide heat-up synthesis routes to understand and conclude which methods allow good and reproducible size control over a range of relevant nanoparticle diameters. Using transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) for the characterization of the nanoparticle size distribution we find that a set of solvents (1-octadecene, trioctylamine, docosane) provides access to a temperature range between 300 – 370°C allowing to synthesize monodisperse nanoparticles in a size range of 5 – 24 nm on large scale. We confirm that a thermal pretreatment of the iron oxide precursor is essential to achieve reproducible size control. We find that each solvent provides access to a certain temperature range, within which the variation of temperature, heating rate or precursor concentration allows to reproducibly control the nanoparticle size.
000916951 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000916951 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000916951 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x0
000916951 65017 $$0V:(DE-MLZ)GC-1603-2016$$2V:(DE-HGF)$$aChemical Reactions and Advanced Materials$$x0
000916951 7001_ $$0P:(DE-Juel1)191318$$aWilke, Manuel$$b1$$ufzj
000916951 7001_ $$0P:(DE-Juel1)172746$$aDulle, Martin$$b2$$ufzj
000916951 7001_ $$0P:(DE-Juel1)172686$$aEhlert, Sascha$$b3$$eCorresponding author
000916951 7001_ $$0P:(DE-Juel1)172658$$aFörster, Stephan$$b4$$eCorresponding author
000916951 773__ $$0PERI:(DE-600)2256522-X$$a10.1021/acs.jpcc.2c05380$$gVol. 126, no. 50, p. 21356 - 21367$$n50$$p21356 - 21367$$tThe journal of physical chemistry <Washington, DC> / C$$v126$$x1932-7447$$y2022
000916951 8564_ $$uhttps://juser.fz-juelich.de/record/916951/files/Synthesis%20FeOx_ms_revrev.pdf$$yOpenAccess
000916951 909CO $$ooai:juser.fz-juelich.de:916951$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000916951 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180588$$aForschungszentrum Jülich$$b0$$kFZJ
000916951 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191318$$aForschungszentrum Jülich$$b1$$kFZJ
000916951 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172746$$aForschungszentrum Jülich$$b2$$kFZJ
000916951 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172686$$aForschungszentrum Jülich$$b3$$kFZJ
000916951 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172658$$aForschungszentrum Jülich$$b4$$kFZJ
000916951 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
000916951 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000916951 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-11
000916951 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-11
000916951 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000916951 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-11
000916951 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-11
000916951 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000916951 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM C : 2021$$d2022-11-11
000916951 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000916951 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000916951 920__ $$lno
000916951 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x0
000916951 9201_ $$0I:(DE-Juel1)IBI-8-20200312$$kIBI-8$$lNeutronenstreuung und biologische Materie$$x1
000916951 9801_ $$aFullTexts
000916951 980__ $$ajournal
000916951 980__ $$aVDB
000916951 980__ $$aUNRESTRICTED
000916951 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000916951 980__ $$aI:(DE-Juel1)IBI-8-20200312
000916951 981__ $$aI:(DE-Juel1)JCNS-1-20110106