TY  - JOUR
AU  - Fokina, Vladislava
AU  - Wilke, Manuel
AU  - Dulle, Martin
AU  - Ehlert, Sascha
AU  - Förster, Stephan
TI  - Size Control of Iron Oxide Nanoparticles Synthesized by Thermal Decomposition Methods
JO  - The journal of physical chemistry  / C
VL  - 126
IS  - 50
SN  - 1932-7447
CY  - Washington, DC
PB  - Soc.
M1  - FZJ-2023-00217
SP  - 21356 - 21367
PY  - 2022
AB  - The controlled synthesis of superparamagnetic iron oxide nanoparticles is crucial for a variety of biomedical applications. Among different synthesis routes thermal precursor decomposition methods are the most versatile, yielding monodisperse nanoparticles on the multi-gram scale. Recent in situ kinetic studies of the nucleation and growth processes during thermal decomposition routes revealed non-classical nucleation and growth paths involving amorphous precursor phases and aggregative growth steps. With the knowledge of this kinetic mechanism we systematically examined a range of different iron oxide heat-up synthesis routes to understand and conclude which methods allow good and reproducible size control over a range of relevant nanoparticle diameters. Using transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) for the characterization of the nanoparticle size distribution we find that a set of solvents (1-octadecene, trioctylamine, docosane) provides access to a temperature range between 300 – 370°C allowing to synthesize monodisperse nanoparticles in a size range of 5 – 24 nm on large scale. We confirm that a thermal pretreatment of the iron oxide precursor is essential to achieve reproducible size control. We find that each solvent provides access to a certain temperature range, within which the variation of temperature, heating rate or precursor concentration allows to reproducibly control the nanoparticle size.
LB  - PUB:(DE-HGF)16
UR  - <Go to ISI:>//WOS:000895511200001
DO  - DOI:10.1021/acs.jpcc.2c05380
UR  - https://juser.fz-juelich.de/record/916951
ER  -