| Home > Publications database > Size Control of Iron Oxide Nanoparticles Synthesized by Thermal Decomposition Methods > print |
| 001 | 916951 | ||
| 005 | 20240619092107.0 | ||
| 024 | 7 | _ | |a 10.1021/acs.jpcc.2c05380 |2 doi |
| 024 | 7 | _ | |a 1932-7447 |2 ISSN |
| 024 | 7 | _ | |a 1932-7455 |2 ISSN |
| 024 | 7 | _ | |a 10.34734/FZJ-2023-00217 |2 datacite_doi |
| 024 | 7 | _ | |a WOS:000895511200001 |2 WOS |
| 037 | _ | _ | |a FZJ-2023-00217 |
| 082 | _ | _ | |a 530 |
| 100 | 1 | _ | |a Fokina, Vladislava |0 P:(DE-Juel1)180588 |b 0 |u fzj |
| 245 | _ | _ | |a Size Control of Iron Oxide Nanoparticles Synthesized by Thermal Decomposition Methods |
| 260 | _ | _ | |a Washington, DC |c 2022 |b Soc. |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1710927159_25318 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a The controlled synthesis of superparamagnetic iron oxide nanoparticles is crucial for a variety of biomedical applications. Among different synthesis routes thermal precursor decomposition methods are the most versatile, yielding monodisperse nanoparticles on the multi-gram scale. Recent in situ kinetic studies of the nucleation and growth processes during thermal decomposition routes revealed non-classical nucleation and growth paths involving amorphous precursor phases and aggregative growth steps. With the knowledge of this kinetic mechanism we systematically examined a range of different iron oxide heat-up synthesis routes to understand and conclude which methods allow good and reproducible size control over a range of relevant nanoparticle diameters. Using transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) for the characterization of the nanoparticle size distribution we find that a set of solvents (1-octadecene, trioctylamine, docosane) provides access to a temperature range between 300 – 370°C allowing to synthesize monodisperse nanoparticles in a size range of 5 – 24 nm on large scale. We confirm that a thermal pretreatment of the iron oxide precursor is essential to achieve reproducible size control. We find that each solvent provides access to a certain temperature range, within which the variation of temperature, heating rate or precursor concentration allows to reproducibly control the nanoparticle size. |
| 536 | _ | _ | |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) |0 G:(DE-HGF)POF4-632 |c POF4-632 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 650 | 2 | 7 | |a Chemistry |0 V:(DE-MLZ)SciArea-110 |2 V:(DE-HGF) |x 0 |
| 650 | 1 | 7 | |a Chemical Reactions and Advanced Materials |0 V:(DE-MLZ)GC-1603-2016 |2 V:(DE-HGF) |x 0 |
| 700 | 1 | _ | |a Wilke, Manuel |0 P:(DE-Juel1)191318 |b 1 |u fzj |
| 700 | 1 | _ | |a Dulle, Martin |0 P:(DE-Juel1)172746 |b 2 |u fzj |
| 700 | 1 | _ | |a Ehlert, Sascha |0 P:(DE-Juel1)172686 |b 3 |e Corresponding author |
| 700 | 1 | _ | |a Förster, Stephan |0 P:(DE-Juel1)172658 |b 4 |e Corresponding author |
| 773 | _ | _ | |a 10.1021/acs.jpcc.2c05380 |g Vol. 126, no. 50, p. 21356 - 21367 |0 PERI:(DE-600)2256522-X |n 50 |p 21356 - 21367 |t The journal of physical chemistry |v 126 |y 2022 |x 1932-7447 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/916951/files/Synthesis%20FeOx_ms_revrev.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:916951 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)180588 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)191318 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)172746 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)172686 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)172658 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-632 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Materials – Quantum, Complex and Functional Materials |x 0 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-11 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-11 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2022-11-11 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J PHYS CHEM C : 2021 |d 2022-11-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-11 |
| 920 | _ | _ | |l no |
| 920 | 1 | _ | |0 I:(DE-Juel1)JCNS-1-20110106 |k JCNS-1 |l Neutronenstreuung |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)IBI-8-20200312 |k IBI-8 |l Neutronenstreuung und biologische Materie |x 1 |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)JCNS-1-20110106 |
| 980 | _ | _ | |a I:(DE-Juel1)IBI-8-20200312 |
| 981 | _ | _ | |a I:(DE-Juel1)JCNS-1-20110106 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|