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ABSTRACT

Introduction: Brain metastases in patients with extracranial cancer are typically
associated with increased morbidity and mortality. Stereotactic radiotherapy and
immunotherapy using checkpoint inhibitors currently are essential in brain metastases
treatment. Since conventional contrast-enhanced MRI alone cannot reliably
differentiate between treatment-induced changes and brain metastasis relapse,
several studies investigated the role of PET imaging and, more recently, radiomics,
based on routinely acquired PET images, to overcome this clinically relevant

challenge.

Areas covered: The current literature on PET imaging, including radiomics, in patients
with brain metastases, focusing on the diagnosis and assessment of post-treatment

relapse, is summarized.

Expert Commentary: Available data suggest that imaging parameters, including
radiomics features, mainly derived from amino acid PET, are helpful for diagnosis and

assessment of post-treatment relapse in patients with brain metastases.

KEYWORDS
Amino acid PET; FET; radiomics; pseudoprogression; radiation-induced changes;

checkpoint inhibitors



1. INTRODUCTION

The manifestation of brain metastases in patients with extracranial cancer is
associated with considerable morbidity and mortality. While whole-brain radiation used
to be the standard for treating patients with brain metastases, radiosurgery as a local
treatment option has become the standard of care in many clinical situations [1].
Besides, systemically administered checkpoint inhibitors are increasingly used to treat

the intracranial tumor burden [2,3].

In these patients, physicians are frequently confronted with the necessity to
differentiate brain metastasis relapse from treatment-induced changes following
radiosurgery and systemic treatment options such as checkpoint inhibitors [4-8].
Treatment-related changes may be solely radiographic, asymptomatic, but may also
be symptomatic, refractory to symptomatic steroid therapy, and may ever require an

invasive intervention such as surgery [9].

For example, in patients with brain metastases treated by radiosurgery, a radiation
necrosis rate of approximately 25% has been reported [10]. Depending on the radiation
dose and the irradiated volume, the risk of radiation necrosis may increase to 50%
[10]. In patients with brain metastases treated with systemic checkpoint inhibitor
immunotherapy, e.g., ipilimumab, pembrolizumab, or nivolumab, some patients
experience delayed tumor shrinkage after an initial tumor progression. This
phenomenon is called pseudoprogression and may lead to a premature termination of

an effective immunotherapy [6,11-14].

Since conventional MRI alone cannot reliably differentiate between treatment-related

changes and brain metastasis relapse, several studies have investigated the role of
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PET imaging and, more recently, radiomics, based on routinely acquired PET images,

to overcome this clinically challenging task.

2. MOST IMPORTANT PET TRACERS IN PATIENTS WITH BRAIN METASTASES
The most relevant PET tracers for patients with glioma and brain metastases are
radiolabeled amino acids, especially O-(2-['®F]-fluoroethyl)-L-tyrosine (FET), [''C]-
methyl-L-methionine  (MET), and 3,4-dihydroxy-6-['®F]-fluoro-L-phenylalanine
(FDOPA). Their clinical relevance is related to the reported high clinical value
particularly for differentiating treatment-related changes from actual tumor progression
in both primary and secondary brain tumors [4,7,15]. In patients with brain metastases,
usually presenting with a preexisting blood-brain barrier disruption, the PET probe 3'-
deoxy-3"-["®F]-fluorothymidine (FLT) seems to be also of considerable interest for the
monitoring of treatment effects [16]. FLT is an analog of the nucleoside thymidine
which allows to assess cellular proliferation by tracking the thymidine salvage pathway.
In contrast, PET using ['®F]-2-fluoro-2-deoxy-D-glucose (FDG) for brain metastases
imaging plays only a minor role due to the inferior tumor-to-background contrast related
to the physiologically high cortical uptake [15]. Notwithstanding, FDG PET has been
particularly evaluated for the differentiation of radiation-induced changes after
radiosurgery from local tumor relapse in patients with brain metastases. However,
these studies included only few patients and were limited by considerable variations in
methodology (e.g., visual analysis only or the use of different thresholds). Perhaps as
a result, the diagnostic performance of FDG PET varied considerably in terms of both
sensitivity and specificity (range, 40-100%) [17-23]. Dual-phase FDG PET may be
superior to a single phase scan [20,24] but limited by long time intervals of several
hours between the two scans, hampering routine clinical use especially in seriously ill

patients.



Regarding PET imaging using choline derivates such as '8F-fluorocholine, experience
with these tracers - despite promising initial results - is based mainly on single cases
or case series in patients with brain metastases [25], and their usefulness needs to be

confirmed in larger studies.

3. DIAGNOSIS OF POST-TREATMENT RELAPSE AFTER RADIOTHERAPY USING
AMINO ACID PET

Amino acid PET has been investigated for distinguishing radiotherapy-induced
changes from tumor relapse after radiotherapy, including radiosurgery (Figure 1). MET
PET has demonstrated a sensitivity and specificity of about 70-80% for this indication
using an easily applicable semiquantitative regions-of-interest analysis [26-30]. That
type of analysis describes the tumoral uptake relative to the uptake in the reference
region projected onto the unaffected brain, usually located on the contralateral
hemisphere. It has also been reported that FDOPA PET differentiates recurrent brain
metastases from radiation-induced changes with 80-90% sensitivity and specificity
[31,32]. A similarly high diagnostic performance has also been observed for FET PET
using static and dynamic parameters (sensitivity, 95%; specificity, 91%) [33]. Further
studies evaluating dynamic FET PET acquisition demonstrated comparable sensitivity
and specificity of 80-90% [34,35]. This technique allows the characterization of the
temporal pattern of tracer uptake by deriving a time-activity curve. Subsequently,
dynamic uptake parameters such as time-to-peak values can be calculated from time-
activity curves for further data analysis, e.g., to increase the diagnostic performance.
Other efforts such as combining feature-based radiomics analysis with static FET PET
parameters may also have the potential to improve the diagnostic performance to
distinguish between local brain metastasis relapse and radiation injury without the

acquisition of dynamic FET PET scans [36]. Furthermore, the diagnostic value of
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amino acid PET using FDOPA or MET seems to be superior to perfusion- and diffusion-
weighted MR imaging and FDG PET [23,32]. Moreover, the cost-effectiveness of
amino acid PET has been demonstrated for the differentiation of recurrent brain
metastases from radiation-induced changes [37]. A detailed overview of the discussed

studies in this paragraph is presented in Table 1.

Nevertheless, it has to be pointed out that in almost all studies, this distinction after
radiosurgery is based solely on a single amino acid PET scan. However, many imaging
abnormalities after radiosurgery may regress, remain relatively stable, or progress in
in a variable period of time. Thus, serial amino acid PET may be more suitable to
characterize the long-term evolution of these imaging abnormalities. Recently, a serial
FDOPA PET study (median number of scans, 3) suggested that the FDOPA uptake
remained stable over time (median follow-up, 18 months) in radionecrotic lesions,

whereas it increased significantly in patients with brain metastases relapse [38].

4. DIAGNOSIS OF POST-TREATMENT RELAPSE AFTER CHECKPOINT
INHIBITION USING PET

One of the earliest investigations reported that PET imaging using the radiolabeled
amino acid FET has the potential to diagnose pseudoprogression in patients with brain
metastases undergoing immunotherapy [39]. In that small pilot study with 5 patients
with melanoma brain metastases treated with the checkpoint inhibitor ipilimumab,
imaging findings were correlated with the clinical course after treatment initiation. In
one patient with pseudoprogression and a favorable outcome with a progression-free
survival longer than 6 months, FET PET showed only low metabolic activity. A more
recent study in 40 patients with 107 brain metastases secondary to melanoma or non-

small cell lung cancer treated with radiosurgery, checkpoint inhibitors, or combinations
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thereof evaluated whether FET PET may provide important diagnostic information
regarding both response assessment and diagnosis of pseudoprogression [40]. In that
study, static FET parameters differentiated brain metastasis relapse from treatment-
related changes with an accuracy of 85%. An illustrative patient example is presented

in Figure 2.

A small prospective imaging study using FLT PET suggested that in a subset of
patients with brain metastases secondary to melanoma treated with targeted therapy
or immune checkpoint blockade, metabolic responders may have improved survival of
more than one year after treatment initiation. Importantly, FLT PET responders had at
follow-up a diminished proliferative activity of the tumor despite unchanged contrast
enhancement on conventional MRI [41].

The growing use of checkpoint inhibitors has also promoted the development of PET
tracers to image the expression of immune checkpoints such as PD-1 or PD-L1 [42,43].
Animal studies [44,45] and initial first-in-human studies [46] suggested that these
tracers may be of clinical value for treatment monitoring including response evaluation.
In the latter fist-in-human study, all non-small cell lung cancer cancers of 13 patients
exhibited increased PD-1 expression as assessed by &%Zr-nivolumab PET.
Furthermore, 89Zr-nivolumab accumulation was observed in the majority but not all
brain metastases, most probably related to a small lesion size and/or lacking PD-1 and
PD-L1 expression [46]. In a subsequent first-in-human study of the same group, similar

results could be obtained using pembrolizumab labeled with Zr-89 [47].

Nevertheless, antibody tracers linked with Zr-89 are less suitable for clinical routine
due to the relatively long physical half-life of 72 h. To overcome this shortcoming,

Nienhuis and colleagues used an adnectin-based PD-L1 ligand '8F-BMS986192
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labeled with F-18 (half-life, 110 minutes) [48]. Adnectins are engineered target-binding
proteins, highly specific to therapeutically relevant targets such as immune checkpoints
(e.g., PD-L1). Compared to antibodies labeled with Zr-89, adnectins labeled with F-18
exposes patients to a lower radiation dose, allowing serial PET imaging within shorter
time intervals. An initial suggested that baseline uptake of the adnectin-based PD-L1
ligand '8F-BMS986192 may predict an atezolizumab-induced reduction in tumor

volume in patients with melanoma brain metastases [48].

5. METHODOLOGY OF PET RADIOMICS

Radiomics is a method from the field of artificial intelligence that allows the extraction
of quantitative imaging features that are not accessible by conventional visual image
analysis. Importantly, radiomics can be fully automated applied to any medical imaging
modality (e.g., MRI, PET, or CT), which are routinely acquired during clinical follow-up
[49]. These features can be combined with clinical data (e.g., molecular markers,
survival time) to generate mathematical models for radiomics analysis [49-51]. These
models can be used for various clinical purposes, such as to estimate the prognosis,
predict molecular biomarkers non-invasively, or evaluate post-treatment relapse.
Therefore, radiomics provides additional diagnostic information with great potential to
support clinical decision-making, especially in combination with other clinical

parameters.

One common approach to radiomics is to extract mathematically predefined image
features, so called feature-based radiomics. In contrast, deep learning-based
radiomics uses artificial neural networks to generate, identify, and learn characteristic

image features from the input image data.



Typical preprocessing steps for feature-based radiomics analyses usually include
intensity normalization, spatial smoothing and resampling, noise reduction, and further
corrections, e.g., MRI field inhomogeneities [52-54]. Another essential prerequisite for
radiomics analysis is the three-dimensional segmentation of brain tumor subareas
such as contrast enhancement, necrosis, and perifocal edema. This can be obtained
manually, which is laborious and time-consuming, or automatically using deep learning

algorithms [55,56].

After these preprocessing steps, radiomics features can be extracted. These features
have the potential to uncover tumoral characteristics that are beyond the means of
human perception. Basically, shape features (i.e., geometrical properties), histogram-
based features (i.e., distribution of individual voxel intensity values), textural features
(i.e., statistical relationships between the intensity values of neighboring voxels and
groups of voxels), and higher-order statistics features (i.e., features extracted after the
application of mathematical transformations such as filters) can be extracted. Thus,
hundreds to thousands of features can be easily obtained from the respective medical

image modality.

Related to the high number of features, most of them may be either constant,
redundant, duplicated, irrelevant, or highly correlated. Thus, overfitting the model may
result in a perfect classification accuracy but fails in an external validation data set, i.e.,
the model is not generalizable and cannot be applied in clinical routine. Therefore,
feature selection is an important step in the radiomics workflow prior to model
generation to remove highly correlated and unimportant features, thereby reducing the

risk of overfitting [57,58].



Once a subset of relevant features is identified, a mathematical model can be
generated to evaluate the clinical question of interest. The most popular machine
learning algorithms for model generation are regression models, support vector
machines, and decision trees using random forests. Notably, the final model should be
finally applied to an independent test dataset. Ideally, heterogenous multi-institutional
data acquired at different scanners with varying acquisition protocols and
segmentations are used as test dataset to simulate the situation in clinical routine.
Finally, model performance, generalizability, robustness, and reliability of the

developed model is evaluated based on the test dataset.

6. CLINICAL VALUE OF PET RADIOMICS FOR THE DIAGNOSIS OF POST-
TREATMENT RELAPSE

The potential of MET PET radiomics for the diagnosis of post-treatment relapse was
investigated by Hotta and co-workers [59]. In their study, 41 patients with brain tumors
(n=23 patients with gliomas; n=21 patients with gliomas) underwent MET PET, and 42
radiomics features were calculated. The most important features for the differentiation
between recurrent brain tumor from radiation necrosis was identified by the Gini index.
The developed random forest classifier achieved an AUC of 0.98 after 10-fold cross-

validation for this important clinical indication.

In another study, Lohmann et al. investigated the value of combining structural MRI
and FET PET radiomics for the diagnosis of post-treatment relapse [60]. After image
preprocessing and tumor segmentation, the images were filtered using wavelet
transformation and Laplacian-of-Gaussian filters. In total, 168 radiomics features were

calculated from the filtered and unfiltered images for each patient. The Wilcoxon rank-
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sum test was used for feature selection. The best performing logistic regression model
was identified based on the Akaike information criterion was a combination of both FET
PET and MRI and achieved a diagnostic accuracy of 89%, suggesting that a combined
evaluation obtains more diagnostic information compared to the respective single

modality.

7. CONCLUSIONS

The present literature deploys evidence that amino acid PET and newer PET probes
provide clinically relevant diagnostic information for differentiating treatment-related
changes from post-treatment relapse induced by frequently used treatment options for
patients with brain metastases, i.e., radiosurgery and checkpoint inhibitor
immunotherapy. Furthermore, PET-based radiomics may provide valuable additional

information for this clinically critical distinction.

8. EXPERT OPINION

Advanced PET imaging for brain tumors including brain metastases is a rapidly
emerging field. Overall, available results on the value of PET imaging, including
radiomics, in patients with brain metastases, focusing on the diagnosis and
assessment of post-treatment relapse, are encouraging. Nevertheless, the available
data in this field has to be improved, and an intensification of research is necessary.
To confirm these initial encouraging findings, further studies with a higher number of
patients are warranted in which both harmonized imaging protocols and post-
processing procedures are used. To evaluate imaging findings derived from PET and
PET radiomics, neuropathological validation of imaging findings including target
expression, preferentially by obtaining tissue samples using stereotactic biopsy, is also

necessary, and should be performed more frequently.
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In addition, the combination of PET imaging with advanced MRI techniques such as
perfusion-weighted imaging or proton spectroscopic imaging is not well established.
On the other hand, the advent of hybrid PET/MRI scanners offers the opportunity to
improve this constellation since it is possible to investigate several multimodal imaging
parameters in a time-saving manner under the same (patho)physiological conditions.
Although hybrid PET/MR imaging has more practical advantages and is convenient for
patients, the higher cost of these systems should be weighed against the effort of serial

imaging at different time points.

Other challenges regarding the implementation of PET imaging in this group of patients
are the availability of tracers and general access for brain tumor patients to these
modalities. Many of these challenges are currently still driven by cost and

reimbursement issues.

To further promote clinical translation, the use of liquid biopsies as a surrogate for
tumor tissue seems to be a promising diagnostic method for detecting circulating tumor
DNA, circulating tumor cells, and extracellular vesicles in blood or cerebrospinal fluid
[61]. For example, a recent study suggested that in patients with newly diagnosed
leptomeningeal metastatic disease, the quantification of circulating tumor cells predicts
survival time and outperforms conventional neuroimaging about survival prediction
[62]. Thus, a correlation with advanced neuroimaging findings would be of

considerable interest.
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ARTICLE HIGHLIGHTS
¢ Amino acid PET and newer PET probes have the potential to provide valuable
additional diagnostic information in patients with brain metastases for
differentiating treatment-related changes from post-treatment relapse induced

by radiosurgery and checkpoint inhibitor immunotherapy.

e PET-based radiomics may provide valuable additional information for this

clinically critical distinction.
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FIGURE LEGENDS

Figure 1: Contrast-enhanced MRI and FET PET of a 64-year-old female patient with
a BRAF-wildtype melanoma with a right frontal brain metastasis. The brain metastasis
was treated with radiosurgery, and pembrolizumab was administered concurrently.
Three months later, conventional MRI revealed a slight increase of contrast
enhancement and a markedly perifocal edema. In addition, FET PET showed
pathologically increased metabolic activity, indicating that a treatment-related effect is
unlikely. Subsequently, neuropathological evaluation of the resected tissue confirmed

neoplastic tissue.

Figure 2: MRl and FET PET of a 78-year-old male patient with brain metastases of an
adenocarcinoma of the lung in the left cerebellum and right precentral gyrus treated
with radiosurgery. Sixteen months later, contrast-enhanced MRI suggested tumor
progression (right column). In contrast, FET PET showed no increased metabolic
activity and indicated radiation-induced changes. Neuropathological examination of
extracted tissue samples revealed reactive and necrotic tissue without signs of

neoplastic tissue.
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Table 1: Overview of studies evaluating the differentiation of radiation-induced changes from brain metastases relapse using amino

modalities

acid PET
Tsuyuguchi Terakawa Galldiks Lizarraga Cicone Minamimoto | Romagna Ceccon Tomura Yomo Govaerts
et al. [27] et al. [26] et al. [33] et al. [31] et al. [32] et al. [28] et al. [35] et al. [34] et al. [23] et al. [30] et al. [29]
n Patients 21 51 31 32 42 39 22 62 15 32 26
n Lesions 21 56 40 83 46 42 50 76 18 37 31
n recurrent metastases 9 24 19 32 20 n.a. 21 36 10 19 17
n radiation-induced changes 12 32 21 51 26 n.a. 29 40 8 18 14
Neuropathological
confirmation of diagnosis 52% n.a. 28% 1% 24% n.a. 40% 34% 56% 46% n.a.
Tracer MET MET FET FDOPA FDOPA MET FET FET MET MET MET
Dynamic PET acquisition no no yes no no no yes yes no no no
DCE
Additional advanced parameters,
imaging method n.a. n.a. n.a. n.a. DSC PWI n.a. n.a. n.a. DWI. FDG n.a. n.a.
PET
Sensitivity 78% 79% 74% 81% 90% 82% 86% 86% 90% 82% 79%
Specificity 100% 75% 90% 73% 92% 86% 79% 88% 75% 75% 71%
Accuracy n.a. n.a. 83% 76% 91% 83% 82% 87% n.a. n.a. n.a.
Optimal threshold TBRmean TBRmean TBRmean TBRmean TBRmax TBRmax TBRmean TBRmean TBRmax TBRmax SUVmax
1.4 14 2.0 1.7 1.6 1.3 2.0 2.0 1.4 1.4 3.3
Increase of accuracy by
integrating dynamic n.a. n.a. 10% n.a. n.a. n.a. 6% 1% n.a. n.a. n.a.
FET PET parameters
Performance of amino acid PET
compared to other imaging n.a. n.a. n.a. n.a. superior n.a. n.a. n.a. superior n.a. n.a.
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ABBREVIATIONS: DCE = dynamic contrast-enhanced MR imaging; DSC PWI = dynamic susceptibility contrast-enhanced perfusion-
weighted imaging; DWI = diffusion-weighted imaging; FDG = ['®F]-2-fluoro-2-deoxy-D-glucose; FDOPA = 3,4-dihydroxy-6-['8F]-fluoro-
L-phenylalanine; FET = O-(2-["®F]fluoroethyl)-L-tyrosine; MET = [''C]-methyl-L-methionine; n = number; n.a. = not available; SUV =
standardized uptake value; TBRmeanimax = mean or maximum standardized uptake value of the lesion divided by the maximum
standardized uptake value of the reference region
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