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Abstract
PET imaging using radiolabeled amino acids in addition to MRI has become a valuable diagnostic tool in the clinical manage-
ment of patients with brain tumors. This review provides a comprehensive overview of PET studies in glioma patients with 
a mutation in the isocitrate dehydrogenase gene (IDH). A considerable fraction of these tumors typically show no contrast 
enhancement on MRI, especially when classified as grade 2 according to the World Health Organization classification of 
Central Nervous System tumors. Major diagnostic challenges in this situation are differential diagnosis, target definition for 
diagnostic biopsies, delineation of glioma extent for treatment planning, differentiation of treatment-related changes from 
tumor progression, and the evaluation of response to alkylating agents. The main focus of this review is the role of amino 
acid PET in this setting. Furthermore, in light of clinical trials using IDH inhibitors targeting the mutated IDH enzyme for 
treating patients with IDH-mutant gliomas, we also aim to give an outlook on PET probes specifically targeting the IDH 
mutation, which appear potentially helpful for response assessment.
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Introduction

With the fifth edition of the World Health Organization 
(WHO) classification of tumors of the Central Nervous Sys-
tem (CNS) from 2021, gliomas with isocitrate dehydroge-
nase (IDH) mutations are classified either as diffuse astrocy-
toma of the WHO CNS grade 2–4, or as oligodendroglioma 

of the WHO CNS grade 2–3, if a 1p/19q co-deletion is addi-
tionally present [1].

At initial diagnosis, during treatment, and at follow-up 
of patients with IDH-mutant gliomas, anatomical MRI is 
the imaging modality of choice given its widespread avail-
ability and excellent spatial resolution [2]. In contrast, 
the specificity of this technique for neoplastic tissue is 
low, and a disruption of the blood–brain barrier indicated 
by contrast enhancement is not limited to neoplastic tis-
sue [3–9]. Besides, both contrast enhancement and signal 
changes in fluid-attenuated inversion recovery (FLAIR) 
and T2-weighted images may be induced by inflammation, 
ischemia, or reactive changes following neurooncological 
therapy [8, 10–12]. Of note, IDH-mutant gliomas of the 
WHO CNS grade 2 are mostly non-enhancing on MRI and 
usually evaluated solely based on a hyperintense signal 
extension of FLAIR- or T2-weighted MRI sequences. Fur-
thermore, even a subgroup of IDH-mutant gliomas of the 
WHO CNS grades 3 or 4 may also be non-enhancing [13].

These limitations of anatomical MRI may negatively 
affect a reliable delineation of the spatial extent of non-
enhancing glial tumors for planning of a diagnostic biopsy, 
tumor resection, and other local treatment options such as 
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radiotherapy including the assessment of response [9, 14]. 
In particular, overlooking the most malignant tumor parts 
may lead to both inaccurate diagnosis and grading of tumors 
characterized according to the WHO CNS classification.

To overcome these diagnostic challenges, PET imaging 
using radiolabeled amino acid tracers has become increas-
ingly important over the past decades [9, 14–16]. Further-
more, the clinical value of this group of tracers, besides of 
anatomical MRI, has been recommended by the PET task 
force of the Response Assessment in Neuro-Oncology 
(RANO) Working Group for the diagnostic management of 
patients with either gliomas or brain metastases [17, 18].

This review summarizes the value of amino acid PET for 
the most relevant clinical indications in patients with IDH-
mutant gliomas, with particular emphasis on non-enhancing 
tumors.

Methods

A PubMed search using the search terms “PET”, “glioma”, 
“amino acid”, “MET”, "FET", “FDOPA”, “isocitrate dehy-
drogenase”, “IDH”, “non-enhancing glioma”, “radiother-
apy”, “radiation necrosis”, “pseudoprogression”, “tumor 
extent”, “response assessment”, “treatment-related changes”, 
”immunotherapy”, and combinations thereof was performed 
until July 2022.

Amino acid PET

Different PET tracers have been evaluated in patients with 
gliomas and other brain tumors to visualize and quantify 
multiple metabolic properties such as glucose consumption, 
amino acid transport, proliferation, hypoxia, blood flow, 
and angiogenesis [19]. This section focuses on PET imag-
ing using radiolabeled amino acids, which are increasingly 
used in the diagnostic management of patients with glioma, 
especially in Europe.

The most used amino acid tracers for PET imaging 
to date are O-(2-[18F]-fluoroethyl)-L-tyrosine (FET), 
 [11C]-methyl-L-methionine (MET), and 3,4-dihydroxy-
6-[18F]-fluoro-L-phenylalanine (FDOPA). Their uptake is 
facilitated by large neutral amino acid transporters of the 
L-type (LAT) in gliomas and brain metastases (i.e., subtypes 
LAT1 and LAT2), which are regularly overexpressed in both 
brain tumor types [9, 20–23]. Most early amino acid PET 
studies were performed using MET, but the short half-life of 
20 min imposes logistical challenges, necessitating an onsite 
cyclotron [24, 25]. The advent of 18F-labeled tracers with 
a considerably longer half-life (110 min) such as FET and 
FDOPA allows transport to other facilities and has led to the 
replacement of MET predominantly by FET, especially in 

Europe [9]. Notably, the physiological uptake of FDOPA in 
the striatum may hamper its use in evaluating tumor extent 
[9, 26].

In recent years, the synthetic amino acid analog anti-1-
amino-3-[18F]fluo rocyclobutane-1-carboxylic acid (Fluci-
clovine) has gained clinical interest particularly for imag-
ing of primary and secondary brain tumors. Intratumoral 
transport of Fluciclovine seems to be mediated by LAT1, 
but predominantly by the neutral alanine, serine, cysteine 
transporter 2 (ASCT2), another neutral amino acid trans-
porter [27].

Most important clinical applications

Characterization of newly diagnosed 
non‑enhancing brain lesions for differential 
diagnosis using amino acid PET

Brain lesions presenting hyperintense FLAIR signal altera-
tions on anatomical MRI without concomitant contrast 
enhancement may frequently suggest an IDH-mutant non-
enhancing glioma. On the other hand, these lesions consti-
tute a heterogeneous group of diseases including non-neo-
plastic lesions such as cerebral hematoma, ischemic lesions, 
inflammatory or infectious processes, and even malignant 
gliomas without disrupted blood–brain barrier. False inter-
pretation of these findings may result in necessary treatment 
being deferred or unnecessarily indicated.

Amino acid PET has a sensitivity of more than 90% to 
detect gliomas [28–30], but grade 2 gliomas characterized 
according to older WHO classifications of tumors of the 
CNS [31, 32] exhibit increased tracer uptake only in 70–80% 
[28–30]. The remaining gliomas are not avid on amino acid 
PET (i.e., no increased uptake compared to the unaffected 
brain tissue). Of note, a subgroup of patients without FET 
uptake in brain lesions with MRI findings suspicious for 
low-grade gliomas (i.e., hyperintense T2/FLAIR lesion 
without contrast enhancement) may even show photopenic 
defects on FET PET (i.e., FET uptake visually lower than 
the healthy background uptake) and harbor malignant glio-
mas [33]. This phenomenon has also been described for the 
radiolabeled amino acids MET and FDOPA [34].

Regarding the diagnostic performance of FET PET for 
differential diagnosis, a meta-analysis evaluating 13 stud-
ies with a total of 462 patients reported a specificity of 
76% and a sensitivity of 82% for differentiating primary 
brain tumors from non-tumoral lesions [35]. A subsequent 
FET PET study including 174 patients (n = 73 patients 
with WHO CNS grade 2 gliomas, 75% of these with-
out contrast enhancement) at initial diagnosis of cerebral 
lesions suggestive of glioma yielded a higher specificity 
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(92%) and a positive predictive value for glioma tissue of 
98% using a maximum tumor-to-brain ratio of 2.5 [36].

For differential diagnosis within the subgroup of glio-
mas, patients with oligodendroglioma characterized by 
an IDH mutation and a 1p/19q co-deletion [1] frequently 
exhibit a considerably higher amino acid uptake than 
patients with IDH-mutant astrocytomas [37]. For exam-
ple, a more recent MET PET study by Kim and co-work-
ers reported that in 74 patients with IDH-mutant gliomas 
of the WHO CNS grade 2 or 3, oligodendrogliomas had 
significantly higher average median tumor-to-brain ratios 
than astrocytomas (2.90 vs. 1.40; P < 0.001), but not 
higher than in patients with IDH-wildtype glioma (n = 70) 
(averaged median tumor-to-brain ratio, 3.35) [38].

In summary, amino acid PET may add differential 
diagnostic information in patients with brain lesions sug-
gestive of non-enhancing glioma. Of note, available stud-
ies do not primarily focus on patients with IDH-mutant 
gliomas. Thus, the impact of this genetic alteration on 
the diagnostic performance of amino acid PET warrants 
further investigation.

Target definition for diagnostic biopsy 
and delineation of glioma extent for treatment 
planning using amino acid PET

Particularly in patients with non-enhancing gliomas, it is 
difficult to identify the biopsy target including the most 

malignant tumor parts using anatomical MRI [39–41], 
especially when a widespread T2/FLAIR signal on MRI 
is present [42]. For PET, several studies have correlated 
histomolecular findings obtained from tissue specimens 
with imaging findings on amino acid PET, predomi-
nantly using the tracers FET and MET, and provided 
evidence that this technique detects the solid mass of 
gliomas including most malignant parts and the metaboli-
cally active tumor more reliably than conventional MRI 
[43–49] Fig. 1. Therefore, amino acid PET appears to be 
a highly valuable tool for target definition. In addition, 
combining amino acid PET with advanced MRI tech-
niques such as diffusion- or perfusion-weighted MR imag-
ing may further improve target definition for diagnostic 
biopsy planning [47, 50]. Initial studies suggest that also 
the synthetic amino acid analog Fluciclovine accumulates 
in non-enhancing gliomas and identifies infiltrating tumor 
areas without contrast enhancement on MRI [51, 52]. Con-
sidering the significantly higher tumor-to-brain contrast of 
Fluciclovine compared to other amino acid tracers [53], 
this tracer may be of additional value for the delineation of 
tumor extent and target definition in this group of patients.

Using dynamic FET PET acquisition, additional imag-
ing parameters derived from time-activity curves such 
as time-to-peak values (i.e., time from tracer injection 
to maximum tracer uptake) or quantitative approaches 
to characterize time-activity curve patterns (e.g., calcu-
lation of slope) can be obtained [54]. For instance, the 

Fig. 1  Contrast-enhanced MRI and FET PET of a 49-year-old female 
patient with a large FLAIR-hyperintense lesion without contrast 
enhancement in the right central cortex suggesting a glioma. Due 
to the widespread FLAIR signal, a definite biopsy target is lacking. 
The additional FET PET scan shows a localized area with pathologi-
cally increased metabolic activity (maximum tumor-to-brain ratio, 

3.3), considerably smaller than the hyperintense FLAIR signal (red 
contour), and thereby offers a target for diagnostic biopsy. After FET 
PET-guided stereotactic biopsy of the metabolically active lesion, 
neuropathological evaluation of the obtained tissue revealed an IDH-
mutant astrocytoma, WHO CNS grade 2
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information derived from dynamic FET PET parameters 
may also help identify most malignant tumor parts in sus-
pected gliomas, thus offering an additional tool to define 
the biopsy target [39–41].

Furthermore, accurate delineation of tumor extent to 
ensure a maximal resection is also of particular interest in 
patients with IDH-mutant gliomas, as even minimal tumor 
remnants after surgery may negatively impact overall sur-
vival [55]. A recent study by Ninatti et al. compared the 
additional value of preoperative MET PET for delineating 
tumor extent in patients with IDH-mutant gliomas (i.e., 
oligodendrogliomas and astrocytomas of the WHO CNS 
grade 2 or 3) with anatomical MRI alone [56]. In that 
study, MET PET improved the target volume for surgi-
cal resection in 28 of 153 patients (25%). Moreover, in 
patients with IDH-mutant astrocytomas, higher maximum 
tumor-to-brain ratios on preoperative MET PET were inde-
pendent predictors of shorter progression-free survival 
[56].

Differentiation of treatment‑related changes 
from glioma progression using amino acid PET

The differentiation of treatment-related changes such as 
pseudoprogression or radiation necrosis from tumor progres-
sion is of utmost importance in clinical routine. Especially 

amino acid PET using FET [57–65] or FDOPA [66–68] 
achieved a high diagnostic accuracy for differentiating 
treatment-related changes from tumor progression in glioma 
patients Fig. 2. Of note, these studies have been performed 
primarily on IDH-wildtype glioblastoma patients. In more 
recent studies, the diagnostic performance of amino acid 
PET for this indication has also been evaluated in patients 
with IDH-mutant gliomas. In a study including 127 patients 
(48% of patients had IDH-mutant gliomas), Maurer and col-
leagues reported that the combined analysis of static and 
dynamic FET PET parameters achieved an overall accuracy 
of 81% for the differentiation of treatment-related changes 
from tumor progression [69]. Interestingly, a subgroup anal-
ysis suggested that the diagnostic accuracy was only 67% 
in patients with IDH-mutant gliomas compared to 91% in 
IDH-wildtype glioma patients [69]. On the other hand, in 
subsequent studies the latter finding could be confirmed only 
partially [70–72], indicating that further studies in this sub-
group of patients with IDH-mutant gliomas are warranted.

Assessment of response to alkylating chemotherapy 
using amino acid PET

Two studies evaluated the response to temozolomide chemo-
therapy in patients with previously untreated WHO grade 2 
gliomas classified according to older WHO classifications 

Fig. 2  Contrast-enhanced MRI and FET PET of a 52-year-old male 
patient with a left frontal IDH-mutant, 1p/19q-codeleted oligoden-
droglioma of the WHO CNS grade 2 after resection and radiotherapy 
(top row). The corresponding FET PET scan shows residual meta-
bolic activity (maximum tumor-to-brain ratio, 2.1). After two cycles 
of adjuvant chemotherapy with procarbazine and lomustine, the fol-

low-up MRI (bottom row) shows an increasing FLAIR signal altera-
tion without contrast enhancement, suggesting tumor progression. In 
contrast, the follow-up FET PET shows no increased metabolic activ-
ity, indicating a metabolic response. During adjuvant chemotherapy, 
the hyperintense FLAIR signal regressed partially, and the patient 
was free of tumor progression for more than two years
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[31, 32] using serial MET PET or FET PET compared to 
anatomical MRI [73, 74]. In one of these studies, the IDH 
mutational status was partially available (67% of patients 
had a confirmed IDH mutation) [74]. A metabolic response, 
defined as a decrease of metabolically active tumor vol-
ume of more than 10% was observed in 8 of 11 patients 
(73%), and in 25 of 33 patients (76%), respectively [73, 74]. 
Notably, MET and FET PET detected treatment response 
significantly earlier than FLAIR signal changes on MRI. 
Moreover, a reduced metabolic tumor volume was associ-
ated with a significantly longer progression-free survival and 
an improved seizure control [74].

In a more recent study by Suchorska et al. [75] FET 
PET and MRI were used to assess response to temozolo-
mide or lomustine-based regimens in 61 patients with non-
enhancing gliomas, including 19 patients with IDH-mutant, 
1p/19q-non-codeleted gliomas (31%), and 30 IDH-mutant 
and 1p/19q-codeleted gliomas (49%). Metabolic response, 
defined as any decrease of the metabolic tumor volume, 
was observed in 34 patients (range of decrease relative 
to baseline, 10–25%). These patients had a significantly 
longer time-to-treatment failure than patients with stable or 
increasing metabolic tumor volumes (median time, 78.5 vs. 
24.1 months; P = 0.001). On the other hand, signal changes 
on T2-weighted MRI did not correlate with the patients’ 
survival.

Future prospects

PET imaging of the IDH mutation

In patients with IDH-mutant gliomas, the efficacy of novel 
therapies targeting the mutant IDH enzyme using oral 
IDH1-inhibitors (e.g., ivosidenib), IDH2-inhibitors such 
as endasidenib, inhibitors of both IDH1 and IDH2 muta-
tions (e.g., vorasidenib), and vaccines targeting the IDH1 
(R132H) neoepitope are currently under investigation. Ini-
tial phase I clinical trials suggested promising antitumoral 
activity [76–78]. At initial diagnosis, neuropathological 
diagnostics, including genomic sequencing, is currently 
the method of choice for detecting an IDH mutation. Dur-
ing follow-up, quantification of changes of IDH expression 
levels in patients undergoing these treatment options using 
neuropathological techniques always requires the invasive 
tissue removal. Alternatively, the use of proton MR spec-
troscopy for the non-invasive evaluation of signal changes 
of the oncometabolite 2-hydroxyglutarate related to IDH 
mutations is an option for response assessment, but this 
technique is highly prone to susceptibility artefacts due to 
bone, hemorrhage, calcifications, or surgical material and 
may even be false-positive in 20% of patients with newly 
diagnosed IDH-wildtype glioblastoma [79, 80].

Regarding PET imaging of IDH mutations, novel PET 
tracers such as radiolabeled triazinediamine or butyl-
phenyl sulfonamide analogs, and the radiolabeled IDH1 
inhibitor AGI-5198 may be valuable candidates [81–83]. 
Furthermore, in an animal study, Koyaso and colleagues 
observed that the uptake of 14C-labeled acetate is signifi-
cantly higher in IDH-mutant cells than in IDH-wildtype 
cells [84]. An initial clinical study in 28 glioma patients 
reported similar results for the differentiation between the 
IDH-mutant and IDH-wildtype genotype using the radi-
otracer 18F-fluoroethylcholine [85]. Overall, further devel-
opment of these tracers is warranted, primarily when IDH 
inhibitors are used in clinical routine.

Conclusions

Amino acid PET has become increasingly relevant in 
the clinical care of patients with gliomas. While most 
amino acid PET studies focused mainly on IDH-wildtype 
glioma patients, the available literature regarding its use 
in patients with IDH-mutant gliomas suggests that this 
technique also adds valuable clinical information for 
decision-making. In particular, this has been demonstrated 
for detecting the most malignant tumor parts, delineat-
ing glioma extent, diagnosing treatment-related changes, 
and assessing treatment response in IDH-mutant glioma 
patients.

Nevertheless, it has to be pointed out that in a consid-
erable fraction of available studies, the neuropathological 
characterization of the patients’ gliomas is either based on 
older WHO classifications for CNS tumors (i.e., solely on 
histology) or is only partially histomolecularly characterized 
according to current classifications (i.e., according to the 
WHO classification for CNS tumors from 2016 or 2021). 
Thus, further studies in more homogenous patient groups 
with well-defined glioma characteristics in line with the lat-
est 2021 WHO classification for CNS tumors, preferably in 
a prospective setting, are warranted.

One prospect is the specific PET imaging of IDH muta-
tions for response assessment in patients undergoing IDH-
targeted therapies. The added clinical value is related to the 
considerably increased specificity of these PET probes for 
IDH mutations. Therefore, it offers a more reliable response 
evaluation since FLAIR signal alterations may be unspecific 
for neoplastic tissue, and 2-hydroxyglutarate MR spectros-
copy is highly susceptible to artifacts.
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