000916977 001__ 916977
000916977 005__ 20230929112504.0
000916977 0247_ $$2doi$$a10.1016/j.ebiom.2022.104425
000916977 0247_ $$2Handle$$a2128/33439
000916977 0247_ $$2pmid$$a36563488
000916977 0247_ $$2WOS$$aWOS:000905154300007
000916977 037__ $$aFZJ-2023-00243
000916977 082__ $$a610
000916977 1001_ $$00000-0003-2434-1822$$aCheng, Bastian$$b0$$eCorresponding author
000916977 245__ $$aMapping the deficit dimension structure of the National Institutes of Health Stroke Scale
000916977 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2023
000916977 3367_ $$2DRIVER$$aarticle
000916977 3367_ $$2DataCite$$aOutput Types/Journal article
000916977 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1673336385_4439
000916977 3367_ $$2BibTeX$$aARTICLE
000916977 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000916977 3367_ $$00$$2EndNote$$aJournal Article
000916977 520__ $$aBackground: The National Institutes of Health Stroke Scale (NIHSS) is the most frequently applied clinical rating scale for standardized assessment of neurological deficits in acute stroke in both clinical and research settings. Notwithstanding this prominent role, important questions regarding its validity remain insufficiently addressed: Investigations of the underlying dimensional structure of the NIHSS yielded inconsistent results that are largely not generalizable across studies. Neurobiological validations by linking measured deficit dimensions to brain anatomy and function are missing.Methods: We, therefore, employ advanced machine learning to identify an optimal representation of the dimensional structure of the NIHSS across two independent and heterogeneous stroke datasets (N = 503 and N = 690). Associated lesion locations are identified by multivariate lesion-deficit mapping (LDM) and their functional relevance is profiled based on a-priori task activation meta-data analysis, to provide an independent link to the behavioural level.Findings: A five-factor structure of the NIHSS was identified as the most robust and generalizable representation of stroke deficit dimensions across study populations, settings, and clinical phenotypes. Specifically, the identified dimensions comprised NIHSS items for (F1) left motor deficits, (F2) right motor deficits, (F3) dysarthria and facial palsy, (F4) language, and (F5) deficits in spatial attention and gaze. LDM linked four of these factors to differentially localized, eloquent neuroanatomical areas. Functional characterization of LDM results aligned with detected deficit dimensions, revealing associations with motor functions, language processing, and various functions in the perception domain.Interpretation: By cross-validating machine learning in heterogeneous multi-site stroke cohorts, we report evidence on the validity of the NIHSS: We identified an overarching structure of the NISHS containing a five-dimensional representation of stroke deficits. We provide an anatomical map of the NIHSS that is of value for future applications of individualized stroke treatment and rehabilitation.Funding: This research was supported by the National Key R&D Program of China (Grant No. 2021YFC2502200), the National Human Brain Project of China (Grant No. 2022ZD0214000)", the German Research Foundation (Deutsche Forschungsgemeinschaft), Project 178316478 (A1, C1, C2), and Project 454012190 of the SPP 2041, the Helmholtz Portfolio Theme "Supercomputing and Modelling for the Human Brain" and Helmholtz Imaging Platform grant NimRLS (ZT-I-PF-4-010).
000916977 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000916977 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000916977 7001_ $$0P:(DE-Juel1)171414$$aChen, Ji$$b1$$eCorresponding author
000916977 7001_ $$0P:(DE-HGF)0$$aKönigsberg, Alina$$b2
000916977 7001_ $$0P:(DE-HGF)0$$aMayer, Carola$$b3
000916977 7001_ $$0P:(DE-HGF)0$$aRimmele, Leander$$b4
000916977 7001_ $$0P:(DE-Juel1)172843$$aPatil, Kaustubh R.$$b5
000916977 7001_ $$0P:(DE-HGF)0$$aGerloff, Christian$$b6
000916977 7001_ $$0P:(DE-HGF)0$$aThomalla, Götz$$b7
000916977 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b8
000916977 773__ $$0PERI:(DE-600)2799017-5$$a10.1016/j.ebiom.2022.104425$$gVol. 87, p. 104425 -$$p104425 -$$tEBioMedicine$$v87$$x2352-3964$$y2023
000916977 8564_ $$uhttps://juser.fz-juelich.de/record/916977/files/1-s2.0-S2352396422006077-main.pdf$$yOpenAccess
000916977 909CO $$ooai:juser.fz-juelich.de:916977$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000916977 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171414$$aForschungszentrum Jülich$$b1$$kFZJ
000916977 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172843$$aForschungszentrum Jülich$$b5$$kFZJ
000916977 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b6$$kExtern
000916977 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b8$$kFZJ
000916977 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000916977 9141_ $$y2023
000916977 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-25
000916977 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000916977 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-25
000916977 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-25
000916977 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000916977 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-25
000916977 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEBIOMEDICINE : 2022$$d2023-08-26
000916977 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-26
000916977 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-26
000916977 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-26
000916977 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T08:51:17Z
000916977 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T08:51:17Z
000916977 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-05-02T08:51:17Z
000916977 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-26
000916977 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-26
000916977 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bEBIOMEDICINE : 2022$$d2023-08-26
000916977 920__ $$lyes
000916977 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000916977 980__ $$ajournal
000916977 980__ $$aVDB
000916977 980__ $$aUNRESTRICTED
000916977 980__ $$aI:(DE-Juel1)INM-7-20090406
000916977 9801_ $$aFullTexts