000917058 001__ 917058
000917058 005__ 20230224084258.0
000917058 0247_ $$2doi$$a10.1016/j.jmr.2022.107323
000917058 0247_ $$2ISSN$$a1090-7807
000917058 0247_ $$2ISSN$$a0022-2364
000917058 0247_ $$2ISSN$$a1096-0856
000917058 0247_ $$2ISSN$$a1557-8968
000917058 0247_ $$2pmid$$a36375285
000917058 0247_ $$2WOS$$aWOS:000900743900011
000917058 037__ $$aFZJ-2023-00303
000917058 082__ $$a530
000917058 1001_ $$0P:(DE-HGF)0$$aBecker, Moritz$$b0
000917058 245__ $$aAcquisitions with random shim values enhance AI-driven NMR shimming
000917058 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2022
000917058 3367_ $$2DRIVER$$aarticle
000917058 3367_ $$2DataCite$$aOutput Types/Journal article
000917058 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1673425452_15187
000917058 3367_ $$2BibTeX$$aARTICLE
000917058 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000917058 3367_ $$00$$2EndNote$$aJournal Article
000917058 520__ $$aShimming is still an unavoidable, time-consuming and cumbersome burden that precedes NMR experiments, and aims to achieve a homogeneous magnetic field distribution, which is required for expressive spectroscopy measurements. This study presents multiple enhancements to AI-driven shimming. We achieve fast, quasi-iterative shimming on multiple shims simultaneously via a temporal history that combines spectra and past shim actions. Moreover, we enable efficient data collection by randomized dataset acquisition, allowing scalability to higher-order shims. Application at a low-field benchtop magnet reduces the linewidth in 87 of 100 random distortions from 4 Hz to below 1 Hz, within less than 10 NMR acquisitions. Compared to, and combined with, traditional methods, we significantly enhance both the speed and performance of shimming algorithms. In particular, AI-driven shimming needs roughly 1/3 acquisitions, and helps to avoid local minima in of the cases. Our dataset and code is publicly available.
000917058 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000917058 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000917058 7001_ $$0P:(DE-HGF)0$$aLehmkuhl, Sören$$b1
000917058 7001_ $$0P:(DE-Juel1)185654$$aKesselheim, Stefan$$b2
000917058 7001_ $$0P:(DE-HGF)0$$aKorvink, Jan G.$$b3$$eCorresponding author
000917058 7001_ $$0P:(DE-HGF)0$$aJouda, Mazin$$b4$$eCorresponding author
000917058 773__ $$0PERI:(DE-600)1469665-4$$a10.1016/j.jmr.2022.107323$$gVol. 345, p. 107323 -$$p107323 -$$tJournal of magnetic resonance$$v345$$x1090-7807$$y2022
000917058 8564_ $$uhttps://juser.fz-juelich.de/record/917058/files/2022_Becker_JMRO_enhancedDeepRegression-2.pdf$$yRestricted
000917058 909CO $$ooai:juser.fz-juelich.de:917058$$pVDB
000917058 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185654$$aForschungszentrum Jülich$$b2$$kFZJ
000917058 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000917058 9141_ $$y2022
000917058 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-25$$wger
000917058 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-25
000917058 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-25
000917058 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-25
000917058 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-25
000917058 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-25
000917058 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-25
000917058 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-25
000917058 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-25
000917058 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MAGN RESON : 2021$$d2022-11-25
000917058 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-25
000917058 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-25
000917058 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-25
000917058 920__ $$lyes
000917058 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000917058 980__ $$ajournal
000917058 980__ $$aVDB
000917058 980__ $$aI:(DE-Juel1)JSC-20090406
000917058 980__ $$aUNRESTRICTED