Home > Publications database > Acquisitions with random shim values enhance AI-driven NMR shimming > print |
001 | 917058 | ||
005 | 20230224084258.0 | ||
024 | 7 | _ | |a 10.1016/j.jmr.2022.107323 |2 doi |
024 | 7 | _ | |a 1090-7807 |2 ISSN |
024 | 7 | _ | |a 0022-2364 |2 ISSN |
024 | 7 | _ | |a 1096-0856 |2 ISSN |
024 | 7 | _ | |a 1557-8968 |2 ISSN |
024 | 7 | _ | |a 36375285 |2 pmid |
024 | 7 | _ | |a WOS:000900743900011 |2 WOS |
037 | _ | _ | |a FZJ-2023-00303 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Becker, Moritz |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Acquisitions with random shim values enhance AI-driven NMR shimming |
260 | _ | _ | |a Amsterdam [u.a.] |c 2022 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1673425452_15187 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Shimming is still an unavoidable, time-consuming and cumbersome burden that precedes NMR experiments, and aims to achieve a homogeneous magnetic field distribution, which is required for expressive spectroscopy measurements. This study presents multiple enhancements to AI-driven shimming. We achieve fast, quasi-iterative shimming on multiple shims simultaneously via a temporal history that combines spectra and past shim actions. Moreover, we enable efficient data collection by randomized dataset acquisition, allowing scalability to higher-order shims. Application at a low-field benchtop magnet reduces the linewidth in 87 of 100 random distortions from 4 Hz to below 1 Hz, within less than 10 NMR acquisitions. Compared to, and combined with, traditional methods, we significantly enhance both the speed and performance of shimming algorithms. In particular, AI-driven shimming needs roughly 1/3 acquisitions, and helps to avoid local minima in of the cases. Our dataset and code is publicly available. |
536 | _ | _ | |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5112 |c POF4-511 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Lehmkuhl, Sören |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Kesselheim, Stefan |0 P:(DE-Juel1)185654 |b 2 |
700 | 1 | _ | |a Korvink, Jan G. |0 P:(DE-HGF)0 |b 3 |e Corresponding author |
700 | 1 | _ | |a Jouda, Mazin |0 P:(DE-HGF)0 |b 4 |e Corresponding author |
773 | _ | _ | |a 10.1016/j.jmr.2022.107323 |g Vol. 345, p. 107323 - |0 PERI:(DE-600)1469665-4 |p 107323 - |t Journal of magnetic resonance |v 345 |y 2022 |x 1090-7807 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/917058/files/2022_Becker_JMRO_enhancedDeepRegression-2.pdf |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:917058 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)185654 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5112 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2022-11-25 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-25 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2022-11-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-25 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J MAGN RESON : 2021 |d 2022-11-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2022-11-25 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2022-11-25 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2022-11-25 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|