001     917058
005     20230224084258.0
024 7 _ |a 10.1016/j.jmr.2022.107323
|2 doi
024 7 _ |a 1090-7807
|2 ISSN
024 7 _ |a 0022-2364
|2 ISSN
024 7 _ |a 1096-0856
|2 ISSN
024 7 _ |a 1557-8968
|2 ISSN
024 7 _ |a 36375285
|2 pmid
024 7 _ |a WOS:000900743900011
|2 WOS
037 _ _ |a FZJ-2023-00303
082 _ _ |a 530
100 1 _ |a Becker, Moritz
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Acquisitions with random shim values enhance AI-driven NMR shimming
260 _ _ |a Amsterdam [u.a.]
|c 2022
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1673425452_15187
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Shimming is still an unavoidable, time-consuming and cumbersome burden that precedes NMR experiments, and aims to achieve a homogeneous magnetic field distribution, which is required for expressive spectroscopy measurements. This study presents multiple enhancements to AI-driven shimming. We achieve fast, quasi-iterative shimming on multiple shims simultaneously via a temporal history that combines spectra and past shim actions. Moreover, we enable efficient data collection by randomized dataset acquisition, allowing scalability to higher-order shims. Application at a low-field benchtop magnet reduces the linewidth in 87 of 100 random distortions from 4 Hz to below 1 Hz, within less than 10 NMR acquisitions. Compared to, and combined with, traditional methods, we significantly enhance both the speed and performance of shimming algorithms. In particular, AI-driven shimming needs roughly 1/3 acquisitions, and helps to avoid local minima in of the cases. Our dataset and code is publicly available.
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Lehmkuhl, Sören
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kesselheim, Stefan
|0 P:(DE-Juel1)185654
|b 2
700 1 _ |a Korvink, Jan G.
|0 P:(DE-HGF)0
|b 3
|e Corresponding author
700 1 _ |a Jouda, Mazin
|0 P:(DE-HGF)0
|b 4
|e Corresponding author
773 _ _ |a 10.1016/j.jmr.2022.107323
|g Vol. 345, p. 107323 -
|0 PERI:(DE-600)1469665-4
|p 107323 -
|t Journal of magnetic resonance
|v 345
|y 2022
|x 1090-7807
856 4 _ |u https://juser.fz-juelich.de/record/917058/files/2022_Becker_JMRO_enhancedDeepRegression-2.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:917058
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)185654
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
914 1 _ |y 2022
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-25
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-25
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-25
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MAGN RESON : 2021
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-25
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-25
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-25
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21