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I discuss recent developments in nuclear lattice effective field theory, which is a premier tool in
the theory of nuclear structure and reactions. I discuss a number of exciting results on topics
such as nuclear thermodynamics, perturbative nuclear structure calculations beyond first order
perturbation theory and a three-dimensional tomography of the carbon nucleus. I also discuss
alpha-alpha scattering in the multiverse and give an outlook on upcoming results at N3LO
precision.

1 Introduction

Understanding the formation of strongly interacting systems such as atomic nuclei from
first principles calculations is still one of the biggest challenges within contemporary the-
oretical physics. While the theory of the strong interactions, Quantum Chromodynamics
(QCD), is well tested in many processes, the matter that leads to life in our Universe is
based on nuclei, which are self-bound systems of nucleons (protons and neutrons). As the
nucleons themselves consist of quarks and gluons, and hence are not fundamental degrees
of freedom, the forces between nucleons are not completely given in terms of two-body
interactions, but include three-body and higher order interaction terms. Much progress in
the understanding of the structure and dynamics of nuclei has been made in the context of
Nuclear Lattice Effective Field Theory (NLEFT)1, which combines the so successful low-
energy chiral effective field theory of QCD with stochastic methods (Monte Carlo simula-
tions). While direct calculations of nuclei based on quarks and gluons in the framework of
lattice QCD are essentially impossible due to the severe sign problem, formulating the nu-
clear forces in terms of protons, neutrons and pions is not only more appropriate, but also
comes with the added value of the approximate Wigner SU(4) (spin-isospin) symmetry of
the underlying nuclear interactions. This symmetry in fact suppresses the sign oscillations
strongly, and in the limit of an exact Wigner SU(4) symmetry, spin-isospin saturated nuclei
like e.g. 4He are free of any sign oscillation. In NLEFT simulations, Euclidean space-time
is discretised on a torus of volume L3 × Lt, where L is the side length of the spatial di-
mension, and Lt denotes the extent of the Euclidean time dimension. The lattice spacing
in the spatial (temporal) dimensions is a (at). The maximal momentum on the lattice is
pmax ≡ π/a, which serves as the UV regulator of the theory. Nucleons are point-like parti-
cles on the lattice sites, and the interactions between nucleons (pion exchanges and contact
terms) are treated as insertions on the nucleon world lines via auxiliary-field representa-
tions. Properties of multi-nucleon systems are computed by means of the projection Monte
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Carlo (MC) method. Each nucleon is treated as a single particle propagating in a fluctuating
background of pion and auxiliary fields. Both local and non-local smearings are applied to
the nucleon creation and annihilation operators. Euclidean time projection is started from
some initial state ΨA for Z protons and N neutrons (with A = Z + N ). Then, a Wigner
SU(4) symmetric Hamiltonian is used as a computationally inexpensive filter for the first
few Euclidean time steps. This suppresses sign oscillations dramatically. Finally, the full
LO chiral EFT Hamiltonian is applied and one calculates the ground state energy and other
properties from the correlation function Z(t) ≡ 〈ΨA| exp(−tH)|ΨA〉 = Tr{MLt}, in
the limit of large Euclidean projection time t, with M the normal-ordered transfer-matrix
operator and Lt the number of Euclidean time steps. Higher-order contributions are com-
puted as perturbative corrections to the LO amplitude. The properties of excited states are
obtained from a multi-channel projection MC method. Further, lattice improvement and
smearing is applied to the momentum-dependent operators and operators are included, that
allow to remove the artifacts from the breaking of rotational symmetry on the lattice. A
much more detailed description is given in the recent monograph1.

2 Nuclear Thermodynamics

The equation of state of strongly interacting matter is one of the central topics in contem-
porary nuclear physics, as it plays an important role in the early universe and the generation
of gravitational waves in neutron star mergers. There are also important connections be-
tween the nuclear equation of state and heavy-ion collisions. It is well established that
highly-excited nuclear states can be treated statistically as part of an equilibrium thermal
distribution. The large density of states at high energies allows a treatment in terms of
thermodynamical concepts, such as temperature, entropy, and free energy. Within NLEFT
a new paradigm for calculating ab initio nuclear thermodynamics for lattice simulations
was developed in Ref. 2. This is based on a new and efficient method, called the pinhole
trace algorithm (PTA), for computing nuclear observables at nonzero temperature using a
canonical ensemble with fixed numbers of protons and neutrons. For a canonical ensemble
with fixed nucleon number A, volume V = L3 and temperature T , the expectation value
of any observable O is given by

〈O〉β =
ZO(β)

Z(β)
=

TrA(e−βHO)

TrA(e−βH)
, (1)

with Z(β) the partition function, β = T−1 the inverse temperature, H the Hamiltonian,
and TrA is the trace over the A-body Hilbert space. Throughout, canonical units with
~ = c = kB = 1 are utilised. The PTA can be used to efficiently compute Z(β) and
ZO(β) on the lattice. The PTA is an extension of the pinhole algorithm introduced in
Ref. 3 to sample the spatial positions and spin/isospin indices of the nucleons. The new
feature is that a quantum mechanical trace over all possible states is performed in addition.
The partition function Z(β) can be written explicitly in the single particle basis as

Z(β) =
∑

c1,··· ,cA
〈c1, · · · , cA| exp(−βH)|c1, · · · , cA〉, (2)

where the basis states are Slater determinants composed of point particles, ci = (ni, σi, τi)
which combine the lattice vector of the i-th particle, its spin σi i and isospin τi. The neutron
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Figure 1. Left panel: The pinhole trace algorithm (PTA). At mid-times t = Ltat/2, a sheet with pinholes of
spin-isospin indices (injn) is inserted and the periodic boundary conditions impose the temperature β = 1/T .
Right panel: Scaling of the PTA with nucleon number A and volume V = L3.

number N and proton number Z are separately conserved, and the sum in Eq. 2 is limited
to the subspace with the specified values for N and Z. By decomposing the interactions in
H using auxiliary fields, one obtains the path-integral expression for Eq. 2

Z(β) =
∑

c1,··· ,cA

∫
Ds1 · · · DsLt〈c1, · · · , cA|M(sLt) · · ·M(s1)|c1, · · · , cA〉, (3)

with the M(snt) the normal-ordered transfer matrix for time step nt, and snt is a short-
hand notation for all auxiliary fields at that time step. In the PTA one evaluates Eq. 3
using Monte Carlo methods, see the left panel of Fig. 1 for a graphical illustration and
more details are given in Ref. 2. The arguably biggest advantage of the PTA is its time
scaling ∼ A2V Lt, see the right panel of Fig. 1. This is very different to commonly used
algorithms based on the grand-canonical ensemble, like the well-known BSS method first
described in Ref. 4. The BBS algorithm scales as AV 2Lt, so the cost savings of the PTA
is a factor of V/A. Thus, the speedup associated with the PTA can be as large as one
thousand, depending on the lattice spacing and particle density. Another important tech-
nical aspect related to the calculation of thermodynamic quantities is the use of twisted
boundary conditions (TBCs). The finite volume together with the chosen boundary con-
dition will induce fictitious shell effects. The origin of the finite volume shell effects is
the constraint imposed by the boundary conditions on the particle momenta. One way
to overcome this is to use TBCs5. Here, extra phases are attached to the wave function
when a particle cross the boundaries. Averaging over all possible twist angles provides
an efficient way of approaching the infinite volume limit6–9, 2. In Ref. 2 simulations to
investigate the nuclear liquid-vapour phase transition were performed on L3 = 43, 53, 63

cubic lattices with up to 144 nucleons and a spatial lattice spacing a = 1.32 fm, such
that the corresponding momentum cutoff is Λ = π/a ≈ 471 MeV. The temporal lattice
spacing is taken to be at = 1/2000 MeV−1. The temperatures considered spanned the
range from 10-20 MeV and the densities varied from n = 0.008 fm−3 to n = 0.20 fm−3.
Remember that nuclear matter density is n0 = 0.16 fm−3. These settings allow one to
explore the whole region relevant to the nuclear matter liquid-vapour phase transition.
Throughout, symmetric nuclear matter with N = Z and without the Coulomb interac-
tion was considered. In Fig. 2 the calculated chemical potential and pressure isotherms are
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Figure 2. Left panel: The µ-ρ isotherms of symmetric nuclear matter in a volume L3 = 63. The numbers on the
lines are temperatures in MeV. The black line denotes the liquid-vapour coexistence line derived from Maxwell
construction, and the red star marks the calculated critical point. Right panel: The p-ρ isotherms of symmetric
nuclear matter for L3 = 63. The black line denotes the liquid-vapour coexistence line, and the red star marks
the calculated critical point. The cyan rectangle marks the empirical critical point extracted from heavy-ion
collisions10.

shown. Each point represents a separate simulation. All the MC errors for µ are smaller
than 0.02 MeV and not shown explicitly. The critical point is then deduced from solving
the equations dµ/dρ = d2µ/dρ2 = 0. The uncertainties in the critical values are esti-
mated by propagating the simulation and interpolation errors. The critical temperature,
density, and chemical potential are, in order: Tc = 15.80(3) MeV, ρc = 0.089(1) fm−3,
and µc = −22.20(1) MeV. The liquid-vapour coexistence line is determined through the
Maxwell construction of each isotherm and depicted as a solid black line in Fig. 2. All
the other bulk thermodynamic quantities can be reliably extracted based on the calculated
high-precision energies and chemical potentials. In the right panel of Fig. 2 the deduced
pressure-density isotherms are shown as well as the corresponding liquid-vapour coexis-
tence line and the critical point. The calculated critical pressure is Pc =0.260(3) MeV/fm3.
For comparison, the critical point extracted by analysing the cluster distributions in heavy-
ion collisions, Tc = 17.9(4) MeV, ρc = 0.06(1) fm−3 and Pc = 0.31(7) MeV/fm3 is
also shown10. Note that these calculations employ a leading-order chiral interaction which
slightly overestimates the nuclear matter saturation density ρ0, which leads to a systematic
error of about 10%. Thus, the quality of both ρ0 and ρc calculations can be improved by
including higher-order corrections. Note that the calculated isotherms follow exactly the
pattern expected for a liquid-vapour phase transition in a finite system. Above Tc the sys-
tem is in a supercritical state, while below Tc the pure liquid and vapour phases exist in
the high- and low-density regime, respectively. For states encompassed by the two arms of
the coexistence line, the system is a mixture of the liquid and vapour phases. In the future,
these calculations will be improved by using more precise interactions.

3 Perturbative Quantum MC Method for Nuclear Physics

Quantum Monte Carlo (QMC) simulations are a powerful method for addressing quantum
many-body problems in many area of physics. Often, the so-called “sign problem” leads
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to exponential scaling of the computational effort with system size. Despite this, there are
a number of cases where QMC algorithms can be applied without sign problems (such
as the leading-order SU(4) symmetric nuclear interaction used in the preceding section).
The realistic systems of physical interests, though, often deviate from these ideal models
significantly and have a sign problem. In these cases, perturbation theory can be used
to bridge the difference between the simplified and the realistic interaction. However, in
QMC perturbation theory is mostly limited to the first order. Improving the quality of the
perturbative calculations requires going to higher orders. In Rayleigh-Schrödinger pertur-
bation theory, the second-order energy correction involves a summation over all quantum
states that can be reached via the perturbing interaction. Such a calculation over all quan-
tum states is not compatible with QMC, which targets only the lowest energy state. Thus, a
different approach is needed. To solve this problem, a new computational framework called
perturbative QMC (ptQMC), which allows for the efficient calculation of higher-order per-
turbative corrections within the Euclidean time formalism, was introduced in Ref. 11. To
be specific, consider the nuclear Hamiltonian givenH = K+V0+VC , withK = −∇2/2m
the kinetic energy operator and m the nucleon mass. The interaction is split into a domi-
nant term V0 and a correction VC . The perturbative expansion of the energy takes the form
E = E0 + δE1 + δE2 + . . ., where the indices 0, 1, 2, ... denote the leading order, the first
order perturbative correction and so. The partial energy contributions at each order are

E0 = 〈Ψ0|(K + V0)|Ψ0〉/〈Ψ0|Ψ0〉 , δE1 = 〈Ψ0|VC |Ψ0〉/〈Ψ0|Ψ0〉,
δE2 = Re(〈Ψ0|VC |δΨ1〉 − δE1〈Ψ0|δΨ1〉)/〈Ψ0|Ψ0〉, (4)

where the wave function Ψ has a similar perturbative expansion

|Ψ〉 = lim
Lt→∞

MLt/2|ΨT 〉 = |Ψ0〉+ |δΨ1〉+O(V 2
C),

|Ψ0〉 = lim
Lt→∞

M
Lt/2
0 |ΨT 〉, |δΨ1〉 = lim

Lt→∞

Lt/2∑

k=1

M
Lt/2−k
0 (M −M0)Mk−1

0 |ΨT 〉, (5)

with M0 =: exp{−at(K + V0)} : the zeroth order transfer matrix and the O(a2
t ) terms

are omitted. Consequently, all matrix elements and overlaps can be expressed with the
amplitudes,

M(O) = 〈ΨT |MLt/2
0 OM

Lt/2
0 |ΨT 〉, (6)

Mk(O) = 〈ΨT |MLt/2
0 OM

Lt/2−k
0 MMk−1

0 |ΨT 〉, (7)

where k = 1, 2, · · · , Lt/2. Here O is the operator inserted in the middle time step like
1,K+V0 or VC . InMk(O) the k-th copy ofM0 is replaced by the full transfer matrixM .
The transfer matricesM0 andM in these amplitudes are computed using the auxiliary field
formalism. The energies E0 and δE1 are just the expectation values 〈O〉 =M(O)/M(1)
with O = K + V0 or VC . These can be calculated by sampling the auxiliary fields s in
M0 with standard algorithms. For δE2 we need to evaluate the quotientMk(O)/M(1).
What remains to be calculated is an integral over the auxiliary field c from the inserted M
inMk(O). For every sample {s1, s2, · · · , sLt} we have

Mk(O) =

∫
DcP (c+ c̄)〈· · ·O · · ·M(sk, c+ c̄) · · · 〉T , (8)
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where the ellipses denote the transfer matrices M0(st) with t 6= k, 〈〉T the expectation
value in the state |ΨT 〉 and P (c) is the standard normal distribution. In Eq. 8 we have
made a variable change c → c̄ + c with c real integral variables. Here, c̄(n) is a constant
field

c̄(n) =
∂

∂c(n)
ln〈· · ·M(sk, c) · · · 〉T

∣∣∣∣
c=0

=
√
−atC〈· · · : M0(sk)ρc(n) : · · · 〉T /M(1),

(9)

where the ellipses again represent the M0’s, C is the coupling constant for the VC term.
Generally, c̄ is a complex field, e.g., for repulsive interactions such as Coulomb we have
C > 0, and the square root in Eq. 9 introduces an imaginary factor i. In this case the
integrand in Eq. 8 contains non-zero phases that may induce a severe sign problem. The
variable change in Eq. 8 serves to alleviate this problem12. To see this, we take the loga-
rithm of the integrand in Eq. 8, expand the result near c = 0 and apply Eq. 9. We find that
the terms linear in c and c̄ which cause the sign problem cancel exactly and the integrand
can be factorised as

Mk(O) =M(s) exp

(
c̄2

2

)∫
Dc exp

(
−c

2

2
+ ε

)
, (10)

where we omit the sum over lattice sites, and ε is a residual term containing quadratic
and higher powers of c. Because inMk(s, c) a common factor

√
at is attached to every c

variable, ε is a small number of the orderO(at). For sufficiently small at, Eq. 10 means that
the integrand in Eq. 8 is a product of a normal distribution and a slowly varying function
exp(ε). We can use stochastic methods to evaluate Eq. 8 by sampling the c field with a
standard normal distribution. This evaluation is unbiased and its uncertainty is determined
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Figure 3. Left panel: ptQMC binding energies as functions of the projection time τ compared with non-
perturbative results. The circles (red), down triangles (green) and diamonds (blue) denote the energies at the
zeroth, first and second orders, respectively. The squares (black) represent the exact results calculated with sparse
matrix multiplications for 3H and full non-perturbative QMC for 4He and 16O, respectively. Each group of re-
sults are fitted with a sum of exponential functions (dashed lines). The red bars mark the experimental binding
energies. Right panel: Schematic plot for a perturbative calculation. The zeroth order wave functions |Ψ0〉 and
|Ψ′0〉 are confined in a subspace corresponding to an irrep of SU(4).
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by the variation of exp(ε). We benchmark the ptQMC using a realistic nuclear chiral force
with two-body interactions up to N2LO13, 14, for details see Ref. 11. In order to compute
ground states of H = K + V2N + Vcou using ptQMC, the zeroth order Hamiltonian is
H0 = K + V0 and one calculates the energy corrections with respect to VC = H − H0.
V0 is the non-locally smeared SU(4) interaction from Ref. 15, which is independent of the
spin and isospin and captures the essential elements of the nuclear force. In the left panel
of Fig. 3 we compare the results obtained using ptQMC with non-perturbative results. We
use a periodic box of size L = 10 for 3H and L = 8 for the other nuclei. The temporal
step is at = 1/1000 MeV−1. For 3H, the system is small enough that we can use exact
sparse matrix calculations. For larger nuclei this is not possible, and so we perform fully
non-perturbative QMC calculations instead, which result in large error bars due to severe
sign problems. For the 16O nucleus, the sign problem sets in so quickly that we cannot
find meaningful results for large τ to make a reliable extrapolation. However, the ptQMC
calculations are free from sign problems. The corresponding statistical errors are smaller
than the size of the symbols in the figure. A sum of decaying exponential functions is used
to capture the residual effects of higher energy excitations and the results are extrapolated
to τ →∞. For all three nuclei, the second order energy corrections are large and essential
in reproducing the data. While this might seem contrary to the normal expectation of
the perturbative series, this is actually a consequence of the symmetry breaking. As the
unperturbed Hamiltonian H0 respects the SU(4) symmetry, the wave function |Ψ0〉 must
belong to one of its irreducible representations (irreps). The full Hamiltonian breaks the
SU(4) symmetry, thus its ground state |Ψ〉 is a mixture of different SU(4) irreps. As is
shown in the right panel of Fig. 3, the components of |Ψ〉 that mixes the SU(4) irreps
can only be seen in |δΨ1〉 or δE2. Note that this effect is strongest for the one-pion-
exchange potential as it breaks both the Wigner-SU(4) and the spin SU(2) symmetries.
Having found such a large second order correction, one must examine the perturbative
series beyond second order. This can be done using the deuteron as an example. For the
deuteron in a small periodic box, an explicit calculation shows that while the second order
correction is sizable due to symmetry-breaking perturbations, higher orders beyond second
order are small. This is consistent with the findings for heavier nuclei discussed above. For
more general calculations, it is also possible that the higher orders have alternate signs and
cancel with each other to give a small residual term. The method presented here is free
from the sign problem and can be applied to QMC calculations for many-body systems in
nuclear physics, condensed matter physics, ultracold atoms, and quantum chemistry.

4 Emergent Geometry of the Carbon Nucleus

The 12C nucleus is under active investigations both experimentally and theoretically, but
still there is little consensus about the nature of various excited states, like e.g. the famous
Hoyle state, that was also studied in NLEFT16, 17. There are two main impediments to
reaching definitive conclusions about the structure of the low-lying 12C states. The first is
the inability to perform calculations that can handle strong multi-particle correlations. The
second is the inability to measure the detailed spatial correlations required to determine
the intrinsic structure of the twelve-particle wave function. In Ref. 18 both problems were
addressed. The full twelve-particle correlations were calculated and a model-independent
tomographic projection to determine the intrinsic three-dimensional structure of each nu-
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Figure 4. Left Panel: Spectrum of 12C (red squares) in comparison with experimental (black stars). The error
bars correspond to one standard deviation errors. The grey shaded regions indicate decay widths for cases where
it has been measured. Earlier results for a = 1.64 fm (blue circles) and a = 1.97 fm (green pentagons) are
also shown20. The triangular shapes indicate the intrinsic shape of each state, either equilateral or obtuse triangle
arrangements of alpha clusters. The dotted lines for some equilateral triangles indicate significant distortions or
large-amplitude displacements of the alpha clusters. Right Panel: The absolute value of the charge form factor
F (q) versus momentum transfer q. The top figure (a) shows the ground state (red squares) and Hoyle state
(green circles), and the bottom figure (b) shows the transition from the ground state to the Hoyle state (red
squares). The error bars correspond to one standard deviation errors. Experimental data (purple stars) are shown
for comparison22–25.

clear state was given. In these calculations, a simple SU(4) symmetric interaction was used,
as in the description the ground state energies of light and medium-mass nuclei15 and the
thermodynamics of symmetric nuclear matter2. It also reproduces the low-energy spectrum
of 12C well20. This interaction involves four parameters, that are determined from a fit to
the groundstate energies of 4He and 12C, the carbon charge radius and and to several elec-
tromagnetic transition rates. An assortment of different initial states for each state of 12C is
used to verify that the choice of initial state does not affect the final observables. The initial
states considered include many different shell model states as well as different geometric
configurations of alpha clusters. The pinhole algorithm is used to determine the probability
distribution for the nucleon positions, spins, and isospins3. For each pinhole configuration,
we know the positions of all A nucleons, and thus the position of each nucleon relative
to the centre of mass is easily calculated. From this information, we can compute many
nuclear observables like the charge density. The charge form factor F (q) is then calcu-
lated by Fourier transforming the charge density. We have calculated the 12C spectrum up
to excitation energies of about 15 MeV for a = 1.64 fm. The results are plotted as red
squares in the left panel of Fig. 4 for different values of the angular momentum and parity.
For comparison we show the experimental data (black stars)21 and earlier results, which
were performed without three-nucleon forces20. Overall, the agreement with the empirical
results is quite good. In the right panel of Fig. 4, the form factors for the ground state and
the Hoyle state in the top figure (a), and the transition form factor from the ground state to
the Hoyle state in the bottom figure (b) are shown compared to the corresponding experi-
mental data. The agreement is fairly good. Using the pinhole algorithm, we can uniquely
determine the three alpha clusters in each state. These three alpha clusters define a triangle
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in three-dimensional space with interior angles θ1, θ2, and 180◦−θ1−θ2. In the left panel
of Fig. 5, we show the probability distributions as a function of θ1 and θ2 for ground state
an various excited states. The dashed white triangle formed by the line segments θ1 = 90◦,
θ2 = 90◦, and θ2 = 90◦−θ1, represents cluster configurations that are right triangles. The
interior region of the dashed white triangle corresponds to configurations that are acute
triangles, and the exterior region corresponds to obtuse triangles. The other three white
dashed line segments along the lines θ1 = θ2, θ1 = θ3, and θ2 = θ3 represent cluster
configurations that are obtuse isosceles triangles. For the ground state, the probability dis-
tribution is strongly centred around an equilateral triangle, θ1 = θ2 = θ3 = 60◦. The 2+

1

and 3−1 states have similar equilateral triangular shapes. In contrast, the 0+
2 Hoyle state

corresponds to an obtuse isosceles triangle. This finding is consistent with older NLEFT
studies16, 17. The 2+

2 and 0+
3 states also have obtuse isosceles triangular shapes. We can

also define a model-independent tomographic projection of the three-dimensional nuclear
density for the states of 12C, for details see Ref. 18 . In the right panel of Fig. 5, we show
the density distribution of selected states of 12C. The 0+

1 , 2+
1 , 3−1 , 4−1 , and 4+

2 states have
similar intrinsic equilateral triangular shapes, consistent with an interpretation as members
of a rotational band built on top of the 0+

1 state. The 0+
2 , 2+

2 , 4+
1 states have similar intrinsic

obtuse isosceles triangle shapes and are consistent with belonging to a rotational band built
on top of the 0+

2 state. These findings are consistent with previous studies based on group
theoretical considerations26. We note that models where the Hoyle state has an equilateral
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triangle symmetry predict an additional 3− and 4− state in the Hoyle state rotational band.
The 0+

3 state has been discussed as a breathing mode excitation of the Hoyle state27–29, but
its detailed structure remains a matter of debate. For example, in a recent work27, 28 the 0+

3

and Hoyle states are suggested to have an equilateral triangular shape. A gas-like structure
with a very large radius has also been predicted29 for the 0+

3 state. Our lattice findings
suggest that the 0+

3 state is a small-amplitude vibrational excitation of the Hoyle state. Our
findings for the intrinsic shapes of the low-lying states of 12C are summarised by the trian-
gular shapes in the left panel of Fig. 4. Further studies using more precise interactions are
planned.

5 Alpha-Alpha Scattering in the Multiverse

Alpha-alpha (α-α) scattering is one of the most fundamental reactions in nuclear (as-
tro)physics. It features some fine-tuning, as the large near-threshold S-wave results from
a state with (JP , I) = (0+, 0) at an energy ER ' 0.1 MeV above the threshold, see e.g.
the review30, with a tiny width of ΓR ' 6 eV. It is precisely this small width (long life-
time) of the unstable 8Be nucleus that allows for the reaction with the third α particle in
the 3α reaction at sufficiently high temperatures and densities. Here, another fine-tuning
appears, namely the closeness of the Hoyle state to the 3α threshold. The fine-tunings in
these (and other) fundamental nuclear reactions together with other fine-tunings in parti-
cle physics and cosmology have led to the concept of the Multiverse, where our Universe
with its observed values is part of a larger structure of universes featuring different sets
of the fundamental constants. Related to this are anthropic considerations, which is the
philosophical idea that the parameters governing our world should fit the intervals compat-
ible with the existence of life on Earth. Coming back to nuclear physics, the closeness of
the Hoyle state energy to the 3α threshold invites investigations about the stability of this
resonance condition under changes of the fundamental parameters of the strong and the
electromagnetic (em) interactions. This was already investigated in models, e.g. Ref. 31,
and NLEFT32–34. The same chiral EFT at N2LO order combined with the so-called Adia-
batic Projection Method (APM), that allows for ab initio calculations of nuclear reactions,
as developed and applied in Refs. 35–39 can be used to study the sensitivity of the low-
energy α-α phase shifts on variations in the light quark mass m̂ and the em fine-structure
constant αEM

40. While the investigation of the resonance enhancement in the 3α process
due to the Hoyle state already sets rather stringent limits on the possible variations of the
fundamental parameters, one has to be aware that these results are afflicted with some in-
herent uncertainties, as in the corresponding stellar simulations only the distance of the
Hoyle state to the 3α-threshold is varied. Translating this into a dependence on, say, the
light quark mass assumes that only the nuclei directly involved in the 3α process are sub-
ject to these changes, but of course one should perform the complete stellar simulations
(reaction networks) with appropriately modified masses and reaction rates. At present, this
is only possible for Big Bang Nucleosynthesis, but not for the whole nuclear reaction net-
works in stars. Therefore, the ab initio computation of the dependence of α-α scattering
on the fundamental parameters of the Standard Model is not subject to such uncertain-
ties and paves the way for more elaborate network calculations in the Multiverse. First,
consider the physical values of the various coupling constants and masses (our Universe).
Due to improvements in the APM compared to the pioneering study of α-α scattering in
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Figure 6. Left panel: S-wave α-α scattering phase shift δ0 versus the energy in the laboratory system, Elab.
Right panel: D-wave α-α scattering phase shift δ2 versus the energy in the laboratory system, Elab. The blue
circles and red squares represent the predictions at NLO and NNLO, respectively, while the data are given by the
black crosses.

Ref. 38, we obtain a very good description of the S- and D-wave phase shifts up to energies
Elab ' 10 MeV at NNLO in the chiral expansion, see Fig. 6. For the study of the variations
under changes of the pion mass with |δMπ/Mπ| ≤ 10%, we rely on the pion mass depen-
dent nuclear Hamiltonian worked out in Ref. 34. To this order, the 8Be nucleus is slightly
bound. In the S-wave phase shift, we find a dramatic effect (unbinding of the two-alpha
system) for changes of −5% and −7% at NLO and NNLO, respectively. We have also
considered the pion mass variation of the S-wave effective range function, which is less
sensitive to the binding issue and shows an added repulsion for negative pion mass shifts.
This additional repulsion will certainly impact the position and the lifetime of 8Be. The
pion mass variation on the D-wave is somewhat more pronounced, as seen by the effect on
the corresponding resonance parameters and also by the D-wave effective range function.
The dominant electromagnetic effect on the α-α scattering phase shifts is the long-ranged
Coulomb potential that is included exactly by using a spherical wall with Coulomb bound-
ary conditions. Taking this effect into account via the Coulomb-modified effective range
expansion, we find very small effects of variations of αEM on the S- and D-wave phase
shifts. We have further shown that up-to-and-including NLO in the chiral expansion, the
dependence of the α-α scattering phase shifts on the QCD θ-angle is entirely given by
the θ-dependence of the pion mass. In summary, we find that α-α scattering sets weaker
constraints on the variation of the light quark masses and the fine-structure constant than
that given by the closeness of the 3α threshold to the Hoyle state. However, as discussed
in detail e.g. in Refs. 31, 34, this requires stellar modelling which introduces some model-
dependence. In contrast to that, the investigation of α-α scattering discussed here is truly
ab initio and not affected by such effects. Still, to further improve these calculations, a
better determination of the pion mass dependence of the singlet and triplet NN scattering
lengths from lattice QCD is mandatory.
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6 Outlook: Towards N3LO Precision

At this time, NLEFT is a well-established ab initio framework at the forefront of the the-
ory of nuclear structure and reactions. At present, high precision calculations at N3LO in
the chiral counting are being performed. This is based on pinning down a precise leading
order interaction as discussed in this contribution with SU(4) invariant interactions that
are locally and non-locally smeared. In that way, the higher order corrections and higher
few-nucleon forces can be treated in perturbation theory, as also discussed here. The un-
derlying N3LO representation of the chiral two-nucleon force has already been worked
out, see Ref. 41, and has been refined by including operators that restore Galilean invari-
ance, see Ref. 42. First preliminary results for nuclei up to A = 40 have been reported e.g
in Refs. 43, 44 and much more detailed and extended high-precision results not only for
ground state energies, but also the spectrum of selected nuclei and the oxygen and calcium
drip lines will be reported soon.
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