000917131 001__ 917131
000917131 005__ 20240712112840.0
000917131 0247_ $$2doi$$a10.1021/acsami.2c16402
000917131 0247_ $$2ISSN$$a1944-8244
000917131 0247_ $$2ISSN$$a1944-8252
000917131 0247_ $$2Handle$$a2128/33639
000917131 0247_ $$2pmid$$a36592370
000917131 0247_ $$2WOS$$aWOS:000908362500001
000917131 037__ $$aFZJ-2023-00363
000917131 082__ $$a600
000917131 1001_ $$aBobrov, Gleb$$b0
000917131 245__ $$aCoupling Particle Ordering and Spherulitic Growth for Long-Term Performance of Nanocellulose/Poly(ethylene oxide) Electrolytes
000917131 260__ $$aWashington, DC$$bSoc.$$c2023
000917131 3367_ $$2DRIVER$$aarticle
000917131 3367_ $$2DataCite$$aOutput Types/Journal article
000917131 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1673945355_27886
000917131 3367_ $$2BibTeX$$aARTICLE
000917131 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000917131 3367_ $$00$$2EndNote$$aJournal Article
000917131 520__ $$aDevelopment of lithium-ion batteries with composite solid polymer electrolytes (CPSEs) has attracted attention due to their higher energy density and improved safety compared to systems utilizing liquid electrolytes. While it is well known that the microstructure of CPSEs affects the ionic conductivity, thermal stability, and mechanical integrity/long-term stability, the bridge between the microscopic and macroscopic scales is still unclear. Herein, we present a systematic investigation of the distribution of TEMPO-oxidized cellulose nanofibrils (t-CNFs) in two different molecular weights of poly(ethylene oxide) (PEO) and its effect on Li+ ion mobility, bulk conductivity, and long-term stability. For the first time, we link local Li-ion mobility at the nanoscale level to the morphology of CPSEs defined by PEO spherulitic growth in the presence of t-CNF. In a low-MW PEO system, spherulites occupy a whole volume of the derived CPSE with t-CNF being incorporated in between lamellas, while their nuclei remain particle-free. In a high-MW PEO system, spherulites are scarce and their growth is arrested in a non-equilibrium cubic shape due to the strong t-CNF network surrounding them. Electrochemical strain microscopy and solid-state 7Li nuclear magnetic resonance spectroscopy confirm that t-CNF does not partake in Li+ ion transport regardless of its distribution within the polymer matrix. Free-standing CSPE films with low-MW PEO have higher conductivity but lack long-term stability due to the existence of uniformly distributed, particle-free, spherulite nuclei, which have very little resistance to Li dendrite growth. On the other hand, high-MW PEO has lower conductivity but demonstrates a highly stable Li cycling response for more than 1000 h at 0.2 mA/cm2 and 65 °C and more than 100 h at 85 °C. The study provides a direct link between the microscopic dynamic, Li-ion transport, bulk mechanical properties and long-term stability of the derived CPSE and, and as such, offers a pathway towards design of robust all-solid-state Li-metal batteries.
000917131 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000917131 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000917131 7001_ $$00000-0003-3112-3890$$aKedzior, Stephanie A.$$b1
000917131 7001_ $$0P:(DE-HGF)0$$aPervez, Syed Atif$$b2
000917131 7001_ $$00000-0002-2282-9018$$aGovedarica, Aleksandra$$b3
000917131 7001_ $$0P:(DE-HGF)0$$aKloker, Gabriele$$b4
000917131 7001_ $$0P:(DE-HGF)0$$aFichtner, Maximilian$$b5
000917131 7001_ $$00000-0002-6708-7660$$aMichaelis, Vladimir K.$$b6
000917131 7001_ $$0P:(DE-HGF)0$$aBernard, Guy M.$$b7
000917131 7001_ $$0P:(DE-Juel1)178865$$aVeelken, Philipp M.$$b8
000917131 7001_ $$0P:(DE-Juel1)167581$$aHausen, Florian$$b9
000917131 7001_ $$00000-0002-3954-2777$$aTrifkovic, Milana$$b10$$eCorresponding author
000917131 773__ $$0PERI:(DE-600)2467494-1$$a10.1021/acsami.2c16402$$gp. acsami.2c16402$$n1$$p1996–2008$$tACS applied materials & interfaces$$v15$$x1944-8244$$y2023
000917131 8564_ $$uhttps://juser.fz-juelich.de/record/917131/files/acsami.2c16402.pdf$$yRestricted
000917131 8564_ $$uhttps://juser.fz-juelich.de/record/917131/files/Manuscript_GBobrov_MTrev.docx$$yPublished on 2023-01-02. Available in OpenAccess from 2024-01-02.
000917131 909CO $$ooai:juser.fz-juelich.de:917131$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000917131 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178865$$aForschungszentrum Jülich$$b8$$kFZJ
000917131 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167581$$aForschungszentrum Jülich$$b9$$kFZJ
000917131 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)167581$$aRWTH Aachen$$b9$$kRWTH
000917131 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000917131 9141_ $$y2023
000917131 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-11
000917131 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000917131 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-11
000917131 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-25
000917131 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-25
000917131 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-25
000917131 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-25
000917131 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-25
000917131 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-25
000917131 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL MATER INTER : 2022$$d2023-10-25
000917131 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL MATER INTER : 2022$$d2023-10-25
000917131 920__ $$lyes
000917131 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000917131 9801_ $$aFullTexts
000917131 980__ $$ajournal
000917131 980__ $$aVDB
000917131 980__ $$aUNRESTRICTED
000917131 980__ $$aI:(DE-Juel1)IEK-9-20110218
000917131 981__ $$aI:(DE-Juel1)IET-1-20110218