000917136 001__ 917136
000917136 005__ 20230404093759.0
000917136 0247_ $$2doi$$a10.3389/fmicb.2022.997448
000917136 0247_ $$2Handle$$a2128/33478
000917136 0247_ $$2pmid$$a36160252
000917136 0247_ $$2WOS$$aWOS:000859687500001
000917136 037__ $$aFZJ-2023-00368
000917136 082__ $$a570
000917136 1001_ $$0P:(DE-Juel1)174338$$aKrüger, Aileen$$b0
000917136 245__ $$aA pseudokinase version of the histidine kinase ChrS promotes high heme tolerance of Corynebacterium glutamicum
000917136 260__ $$aLausanne$$bFrontiers Media$$c2022
000917136 3367_ $$2DRIVER$$aarticle
000917136 3367_ $$2DataCite$$aOutput Types/Journal article
000917136 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1673435377_26335
000917136 3367_ $$2BibTeX$$aARTICLE
000917136 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000917136 3367_ $$00$$2EndNote$$aJournal Article
000917136 500__ $$aBiotechnologie 1
000917136 520__ $$aHeme is an essential cofactor for almost all living cells by acting as prosthetic group for various proteins or serving as alternative iron source. However, elevated levels are highly toxic for cells. Several corynebacterial species employ two paralogous, heme-responsive two-component systems (TCS), ChrSA and HrrSA, to cope with heme stress and to maintain intracellular heme homeostasis. Significant cross-talk at the level of phosphorylation between these systems was previously demonstrated. In this study, we have performed a laboratory evolution experiment to adapt Corynebacterium glutamicum to increasing heme levels. Isolated strains showed a highly increased tolerance to heme growing at concentrations of up to 100 μM. The strain featuring the highest heme tolerance harbored a frameshift mutation in the catalytical and ATPase-domain (CA-domain) of the chrS gene, converting it into a catalytically-inactive pseudokinase (ChrS_CA-fs). Reintroduction of the respective mutation in the parental C. glutamicum strain confirmed high heme tolerance and showed a drastic upregulation of hrtBA encoding a heme export system, conserved in Firmicutes and Actinobacteria. The strain encoding the ChrS pseudokinase variant showed significantly higher heme tolerance than a strain lacking chrS. Mutational analysis revealed that induction of hrtBA in the evolved strain is solely mediated via the cross-phosphorylation of the response regulator (RR) ChrA by the kinase HrrS and BACTH assays revealed the formation of heterodimers between HrrS and ChrS. Overall, our results emphasize an important role of the ChrS pseudokinase in high heme tolerance of the evolved C. glutamicum and demonstrate the promiscuity in heme-dependent signaling of the paralogous two-component systems facilitating fast adaptation to changing environmental conditions.
000917136 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000917136 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000917136 7001_ $$0P:(DE-Juel1)138503$$aFrunzke, Julia$$b1$$eCorresponding author
000917136 773__ $$0PERI:(DE-600)2587354-4$$a10.3389/fmicb.2022.997448$$gVol. 13, p. 997448$$p997448$$tFrontiers in microbiology$$v13$$x1664-302X$$y2022
000917136 8564_ $$uhttps://juser.fz-juelich.de/record/917136/files/fmicb-13-997448.pdf$$yOpenAccess
000917136 8767_ $$d2022-12-27$$eAPC$$jDeposit$$z2507,50 USD
000917136 909CO $$ooai:juser.fz-juelich.de:917136$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000917136 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174338$$aForschungszentrum Jülich$$b0$$kFZJ
000917136 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138503$$aForschungszentrum Jülich$$b1$$kFZJ
000917136 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000917136 9141_ $$y2022
000917136 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-09
000917136 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-09
000917136 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-09
000917136 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-09
000917136 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000917136 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT MICROBIOL : 2021$$d2022-11-09
000917136 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-11T10:43:17Z
000917136 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-11T10:43:17Z
000917136 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-09
000917136 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-09
000917136 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-09
000917136 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000917136 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-05-11T10:43:17Z
000917136 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-09
000917136 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bFRONT MICROBIOL : 2021$$d2022-11-09
000917136 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-09
000917136 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-09
000917136 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000917136 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000917136 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000917136 920__ $$lyes
000917136 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000917136 9801_ $$aFullTexts
000917136 980__ $$ajournal
000917136 980__ $$aVDB
000917136 980__ $$aUNRESTRICTED
000917136 980__ $$aI:(DE-Juel1)IBG-1-20101118
000917136 980__ $$aAPC