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The realistic description of strongly-correlated systems is one of the great challenges in
condensed-matter physics. In the last decade, impressive progress has been achieved by com-
bining new algorithms with the power of massively-parallel supercomputers. Recent develop-
ments made it possible to systematically explore not only spectral functions but also static and
dynamical responses. Furthermore, new categories of systems, such as those with important
spin-orbit interaction effects, including topologically non-trivial materials, became accessible.
Here we briefly describe the numerical approach behind this success.

1 Introduction

Electronic-structure theory is the basis of modern technologies such as electronics and
computing. Electronic properties of materials are determined by quantum mechanics.
Thus, in principle, by solving the Schrödinger equation, we should be able to predict the
properties of real materials, or even design new ones with superior qualities. In practice,
unfortunately, solving this equation is not easy at all. The essential complication comes
from the inherent quantum many-body nature of the problem. As a result, a brute-force
solution is impossible, except in the simplest cases. As an illustration let us consider a
single atom of iron. Having 26 electrons, its wave function is a function of 26 times 3
coordinates. Neglecting spin, already an extremely crude representation of this function
at merely 10 values of each variable would thus require storage of 1078 numbers. Even
after reducing this number by exploiting symmetries, there is simply not enough matter
available in our galaxy for building the required memory.

Given this example, electronic-structure theory seems a hopeless enterprise. Neverthe-
less, it is a thriving discipline. This is largely due to density-functional theory (DFT). In
practice, thanks to the Kohn-Sham (KS) picture, this approach drastically simplifies the
many-body problem by assuming that the electrons retain their individuality and experi-
ence the other electrons via a static mean field. In this picture electrons occupy states that
extend over the whole crystal, forming the band structure of the material.

For many important classes of materials a density-functional description fails even
qualitatively, however. Striking effects like the breakdown of the Fermi-liquid picture at
the Mott metal-insulator transition, heavy Fermion behaviour, exotic one-dimensional Lut-
tinger phases, or high-temperature superconductivity cannot be addressed by such a simple
approach. All these materials are called strongly-correlated systems. This name originates
from the fact that, because of the strong repulsion between the electrons, the latter lose
their individuality, and the single-particle picture breaks down. Furthermore, because of
the strength of the interaction, non-perturbative many-body techniques have to be used, so
that very powerful computers are essential for reliable calculations. And still, calculations
are restricted to quite small model systems. This means that the full Hamiltonian of a crys-
tal has to be approximated by a small lattice Hamiltonian, which describes only (few of)
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Figure 1. Dynamical response function yielding bosonic Goldstone modes for a model simulating high-
temperature superconducting cuprates (reproduced from Ref. 14).

the strongly-correlated electrons. All other electrons have to be included in the calculation
in an average way1.

The modern approach to solving the many-body problem is dynamical mean-field the-
ory (DMFT)2–7. It reduces the lattice Hamiltonian to a correlated impurity embedded in a
self-consistent dynamical medium, which mimics the other lattice sites. This approxima-
tion simplifies the problem significantly. Still, a complicated quantum-impurity problem
remains, which has to be solved. One of the most flexible methods to this aim is quantum
Monte Carlo (QMC)8–12. Thanks to DMFT, it was possible, for the first time, to understand
the physics of the Mott transition. In Mott insulators the electronic band structure loses its
meaning. Instead, physics becomes more local and it is more appropriate to think about
the electrons as occupying atomic-like orbitals.

In this strongly-correlated regime we find a number of fascinating ordering phenom-
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ena. Most well known is anti-ferromagnetism, where spins on neighbouring lattice sites
point in opposite directions. When there are many correlated orbitals, a similar ordered
phase can exist: occupied orbitals on neighbouring sites point in different directions. This
directionality can give rise to highly anisotropic transport properties. Coupling of spin- and
orbital degrees of freedom can make transport properties strongly dependent on magnetic
field. Such a mechanism is believed to be the basis of the colossal magneto-resistance ef-
fect (CMR). Like the giant magneto-resistance (GMR), this effect, once fully understood,
holds the promise of, e.g., another vast increase in hard-disk capacity.

The realistic description of most interesting systems requires that both spin and or-
bital degrees of freedom are accounted for. This enlarges the size of the quantum impurity
problem; the computational time scales with a power (typically larger than one) of the
number of the degrees of freedom; which power exactly depending on the specific algo-
rithm and problem. A further doubling of size comes from the spin-orbit interaction, which
is key for the description of many families of compounds, in particular topologically non-
trivial systems. Finally, complicated spatial patterns cannot be described by a single-site
approach such as DMFT, which assumes that all lattice sites are equivalent. In order to
add the required spatial degrees of freedom the single impurity of DMFT has to be re-
placed by a cluster of sites. This approach is accordingly called cluster DMFT (CDMFT).
Unfortunately, treating a large cluster instead of a single site increases the already high
computational cost of a calculation even further.

With an efficient parallelisation of the QMC solver and of the DMFT self-consistency
loop, we can however exploit the spectacular increase in performance offered by massively
parallel machines of the class of JUWELS. Thanks to advances in algorithms and super-
computers, it is now possible to reach experimental temperatures, where, before massively-
parallel supercomputers, calculations of low temperature physics were limited to tempera-
tures of about 1000 K. In addition, for lack of computer time, uncontrolled approximations
had to be introduced in the model Hamiltonians. Now it is instead possible to check these
approximations by explicit calculations. In short, calculations are becoming significantly
more reliable and consequently gain predictive power. In most recent years, it became pos-
sible to calculate systematically statical and dynamical response functions, obtain bosonic
excitation spectra (an example is shown in Fig. 1), and study spin-orbit correlated materi-
als13–20, included topologically non-trivial systems.

2 Method

2.1 DMFT

The Hubbard Hamiltonian is the simplest model for the description of the Mott metal-
insulator transition. In the tight-binding approximation it becomes

Ĥ = εd
∑

σi

n̂iσ − t
∑

σ〈ii′〉
c†iσci′σ + U

∑

i

n̂i↑n̂i↓, (1)

where c†iσ (ciσ) creates (destroys) an electron at site i and with spin σ, and 〈ii′〉 is a sum
over first neighbours. Here the competing energy scales are the hopping integral, t, and the
on-site Coulomb repulsion, U . The on-site energy, εd, instead, only modifies the chemical

291



potential and thus does not affect physical properties. For U=0, at half-filling, the Hamil-
tonian in Eq. 1 describes a metallic band. For t=0 it describes an insulating collection of
disconnected atoms. Somewhere in between, at a critical value of t/U, a metal to insulator
transition must occur. Here we will discuss the DMFT solution of Eq. 1 and the picture
of the metal-insulator transition emerging from it. The first step consists in mapping Eq. 1
into an effective quantum-impurity model, such as the Anderson Hamiltonian

ĤA =
∑

kσ

εskn̂kσ

︸ ︷︷ ︸
Ĥbath

+
∑

kσ

(
V sk c

†
kσcdσ + h.c.

)

︸ ︷︷ ︸
Ĥhyb

+ εd
∑

σ

n̂dσ + Un̂d↑n̂d↓

︸ ︷︷ ︸
Ĥimp

. (2)

In this model the on-site Coulomb repulsion U appears only in the impurity Hamiltonian,
Ĥimp, while the terms Ĥbath and Ĥhyb, describe, respectively, the bath and the bath-
impurity hybridisation. In the next step, the quantum-impurity model is solved. This
requires non-perturbative numerical methods, such as exact diagonalisation, the numer-
ical renormalisation group, density-matrix renormalisation group or QMC. Here we de-
scribe the DMFT self-consistency loop for a QMC quantum-impurity solver. Solving the
quantum-impurity model yields the impurity Green functionGσd,d(iνn). From the impurity
Dyson equation we can calculate the impurity self-energy

ΣσA(iνn) =
(
G0σ
d,d(iνn)

)−1 −
(
Gσd,d(iνn)

)−1
. (3)

Next, we adopt the local self-energy approximation, i.e., we assume that the self-energy of
the Hubbard model equals the impurity self-energy. The local Dyson equation is used once
more, this time to calculate the bath Green function Gσ(iνn), which in turn defines a new
quantum-impurity model. This procedure is repeated until self-consistency is reached, i.e.,
the number of electrons is correct and the self-energy does not change anymore (within a
given numerical accuracy). It is important to underline that self-consistency is key to the
success of DMFT in describing the metal-to-insulator transition. The self-consistency loop
is shown schematically in Fig. 2 for the general case.

Although the extension of DMFT to Hubbard models with many orbitals might ap-
pear straightforward, in practice it is not. The bottleneck is the solution of the generalised
multi-orbital quantum-impurity problem via QMC. Despite being flexible, QMC-based
approaches have limitations. These can be classified in two types. First, with increas-
ing the number of degrees of freedom, calculations become very quickly computationally
too expensive – how quickly depends on the specific QMC algorithm used and the actual
implementation. Thus, going beyond a rather small number of orbitals and reaching the
zero-temperature limit is unfeasible in practice. The second type of limitation is more
severe. Increasing the number of degrees of freedom leads, eventually, to the infamous
sign problem; when this happens, QMC calculations cannot be performed at all. In or-
der to deal with limitations of the first type, it is crucial to restrict QMC calculations to
the essential degrees of freedom; furthermore, we should exploit symmetries, develop fast
algorithms and use the power of massively parallel supercomputers to reduce the actual
computational time. For the second type of problems not a lot can be done; nevertheless,
it has been shown that a severe sign problem might appear earlier with some basis choices
than with others12. Although eventually we cannot escape it, this suggests that the model
set-up can be used as a tool to expand the moderate sign-problem zone.
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Figure 2. DMFT self-consistency loop. The one-electron Hamiltonian is built in the basis of Bloch states obtained
from localised Wannier functions, e.g., in the local-density approximation (LDA); this givesHLDA

k . The set {ic}
labels the equivalent correlated sites inside the unit cell. The local Green-function matrix is at first calculated
using an initial guess for the self-energy matrix. The bath Green-function matrix is then obtained via the Dyson
equation and used to construct an effective quantum-impurity model. The latter is solved via a quantum-impurity
solver, here quantum Montecarlo (QMC). This yields the impurity Green-function matrix. Through the Dyson
equation the self-energy is then obtained. The procedure is repeated until self-consistency is reached (reproduced
from Ref. 7).

2.2 Quantum-Impurity Solvers: Continuous-Time Quantum Monte Carlo

Here we explain the principles of the continuous-time QMC method8–12, perhaps the most
successful among QMC-based quantum-impurity solvers. In particular, we illustrate the
hybridisation expansion version of the approach. To make things simpler, we consider the
case of a Hubbard model in Eq. 1 with only two sites, i = 1, 2, and, correspondingly,
a quantum-impurity model of form Eq. 2 also made of two sites, one representing the
impurity, labelled with d, and one representing the bath, labelled with s. The first step
consists in splitting the quantum-impurity Hamiltonian into bath (Ĥbath), hybridisation
(Ĥhyb) and local (Ĥloc) terms

ĤA = εs
∑

σ

n̂sσ

︸ ︷︷ ︸
Ĥbath

−t
∑

σ

(
c†dσcsσ + c†sσcdσ

)

︸ ︷︷ ︸
Ĥhyb

+ εd
∑

σ

n̂dσ + Un̂d↑n̂d↓

︸ ︷︷ ︸
Ĥloc

. (4)
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Next, we write the partition function Z as a perturbation series in the hybridisation. To this
end, we define Ĥ0 = Ĥbath + Ĥloc and rewrite the partition function as

Z =Tr
(
e−β(Ĥ0−µN̂)V̂ (β)

)
, (5)

where the operator V̂ (β) is given by

V̂ (β) = eβ(Ĥ0−µN̂) e−β(Ĥ0+Ĥhyb−µN̂)=
∑

m

∫ β

0

dτ1 · · ·
∫ β

τm−1

dτm

︸ ︷︷ ︸∫
dτm

(−1)m
∏1

l=m
Ĥhyb(τl)

︸ ︷︷ ︸
Ôm(τ)

,

(6)

and

Ĥhyb(τl) = eτl(Ĥ0−µN̂) Ĥhyb e
−τl(Ĥ0−µN̂). (7)

In this expansion, the only terms that contribute to the trace are even order ones (m = 2k)
and they are products of impurity (d) and bath (s) creator-annihilator pairs. Thus

∫
dτ2k −→

∫
dτk

∫
dτ̄k and Ô2k(τ) −→

∑

σ,σ̄

Ô2k
σ,σ̄(τ, τ̄), (8)

where

Ô2k
σ,σ̄(τ, τ̄) = (t)2k

k∏

i=1

(
c†dσ̄i(τ̄i)csσ̄i(τ̄i)c

†
sσi(τi)cdσi(τi)

)
. (9)

The vector σ = (σ1, σ2, ..., σk) gives the spins {σi} associated with the k impurity annihi-
lators at imaginary times {τi}, while σ̄ = (σ̄1, σ̄2, ..., σ̄k) gives the spins {σ̄i} associated
with the k impurity creators at imaginary times {τ̄i}. It follows that the local and bath
traces can be decoupled and the partition function can be rewritten as

Z

Zbath
=
∑

k

∫
dτk

∫
dτ̄k

∑

σ,σ̄

dkσ̄,σ(τ, τ̄) tk
σ,σ̄(τ, τ̄), (10)

dkσ̄,σ(τ, τ̄) =
t2k

Zbath
Trbath

(
e−β(Ĥbath−µN̂s)T ∏1

i=kc
†
sσi(τi)csσ̄i(τ̄i)

)
, (11)

tkσ,σ̄(τ, τ̄) = Trloc

(
e−β(Ĥloc−µN̂d)T ∏1

i=kcdσi(τi)c
†
dσ̄i

(τ̄i)
)
, (12)

where Zbath = 1 + 2e−β(εs−µ) + e−2β(εs−µ). The trace involving only bath operators
is simple to calculate, since Ĥbath describes an independent-electron problem for which
Wick’s theorem holds. It is given by the determinant

dkσ̄,σ(τ, τ̄) = det
(
Fkσ̄,σ(τ, τ̄)

)
, (13)

of the k×k non-interacting hybridisation-function matrix, with elements
(
Fkσ̄,σ(τ, τ̄)

)
i′,i

= F 0
σ̄i′ ,σi

(τ̄i′−τi), (14)
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where

F 0
σ̄,σ(τ) = δσ̄,σ

t2

1 + e−β(εs−µ)
×
{
−e−τ(εs−µ) τ > 0,
+e−(β+τ)(εs−µ) τ < 0.

(15)

The calculation of the local trace is in general more complicated. In the case discussed here,
the Hamiltonian does not flip spins. Thus only terms with an equal number of creation and
annihilation operators per spin contribute to the local trace, and we can express the partition
function in expansion orders per spin, kσ . This yields12

Z

Zbath
=

(∏

σ

∞∑

kσ=0

∫
dτkσσ

∫
dτ̄kσσ

)
dkσ̄,σ(τ, τ̄)tkσ,σ̄(τ, τ̄) (16)

where the vectors σ = (σ↑, σ↓) and σ̄ = (σ̄↑, σ̄↓) have (k↑, k↓) components, and for each
kσ component σi = σ̄i = σ. Thus

tkσ,σ̄(τ, τ̄) = Trloc

(
e−β(Ĥloc−µN̂d) T

∏
σ

∏1

i=kσ
cdσ(τσi)c

†
dσ(τ̄σ̄i)

)
. (17)

The latter can be calculated analytically. To do this, first we parametrise all configurations
for a given spin via a timeline [0, β) plus a number of creator/annihilator pairs which define
segments on the timeline. At zeroth order two possible configurations exist per spin, an
empty timeline, which corresponds to the vacuum state |0〉, and a full timeline, which
corresponds to the state c†dσ|0〉. A given configuration yields, at order k = k↑ + k↓

tkσ,σ̄(τ, τ̄) =

(∏

σ

skσσ

)
e−

∑
σσ′ ((εd−µ)δσσ′+

U
2 (1−δσ,σ′ ))lσ,σ′ , (18)

where lσ,σ′ is the length of the overlap of the τ segments for spins σ and σ′, respec-
tively, while sσ = sign(τσ1

−τ̄σ1
) is the fermionic sign. Possible configurations at order

k = 0, 1, 2 are shown in Fig. 3. Taking all k values into account, the partition function can
be expressed as the sum over all configurations {c}, i.e., in short

Z =
∑

c

wc =
∑

c

|wc| sign wc. (19)

In a compact form, we can write wc = dτc dc tc where dτc =
∏
σ

∏kσ
i dτσidτ̄σ̄i , and dc

and tc are the bath and local traces for the configuration c. This expression of the partition
function shows that we can interpret |wc| as the sampling weight of configuration c. A
generic observable Ô can then be obtained as the Monte Carlo average on a finite number
of configurations Nc

〈Ô〉 =

∑
c〈Ô〉c|wc| sign wc∑
c |wc| sign wc

≈
1
Nc

∑Nc
c 〈Ô 〉c sign wc

1
Nc

∑
c sign wc

. (20)

The term 1
Nc

∑
c sign wc in the denominator is the average fermionic sign. When this

is small, much longer runs are required to obtain data of the same quality; eventually
the computational time can become so long that the calculation is unfeasible – in these
cases we have a sign problem. In practice, the QMC simulation starts from a random
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Figure 3. Representative configurations contributing to the local trace at zeroth, first and second order (repro-
duced from Ref. 7). The timelines for spin up are red and those for spin down are blue. The filled circles
correspond to the insertion of a creator (time τ1), and the empty circles to the insertion of an annihilator (time
τ2). Dotted lines represent the vacuum state for a given spin, full lines the occupied state. The grey boxes indicate
the regions in which l↑,↓ 6= 0.

configuration c. Next we propose an update c → c′. Within the Metropolis algorithm, the
acceptance ratio is

Rc→c′ = min

(
1,
pc′→c
pc→c′

|wc′ |
|wc|

)
, (21)

where pc→c′ is the proposal probability for the update c → c′. In the approach described
here, known as segment solver, the basic updates are addition and removal of segments,
antisegments (segments winding over the borders of the timeline, see Fig. 3), or complete
lines. As example, let us consider the insertion of a segment for spin σ. A segment is made
by a creator and an annihilator. The creator is inserted at time τin; the move is rejected if
τin is in a region where a segment exists. If created, the segment can have at most length
lmax, given by the distance between τin and the time at which the next creator is, hence

pc→c′ =
dτ̄

β

dτ

lmax
. (22)
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The proposal probability of the reverse move (removing a segment) is instead given by the
inverse of the number of existing segments

pc′→c =
1

kσ + 1
. (23)

The acceptance ratio for the insertion of a segment becomes then

Rc→c′ = min

(
1,
βlmax
kσ+1

∣∣∣∣
dc′

dc

tc′

tc

∣∣∣∣
)
. (24)

In multi-orbital and multi-site systems the updates are more complex due to the coupling
between flavours, but the general principle holds. Dynamical responses require sampling
three independent imaginary times, sizably increasing the computational cost.

3 Concluding Remarks

We have described the key steps behind numerical simulation of correlated electrons in
materials. In recent years the ability of calculating systematically static and dynamical re-
sponse functions (see Fig. 1) and to study spin-orbit materials (see Fig. 4), included topo-
logically non-trivial matter, has opened new horizons in understanding correlated systems.
This is not only key for basic physics but also for practical applications. Thanks to their
high sensitivity to external parameters such as pressure, temperature or magnetic/electric
fields, correlated systems hold the promise to play a key role in future electronics and infor-
mation technology. Theoretically the challenge is to solve systematically ever larger mod-
els, in order to eventually reach predictive power. Experience so far tells us that ultimately
this can only be achieved with the help of large-scale simulations on novel generations of
massively parallel supercomputers.
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