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Proteins and other biomolecules such as RNA and their interactions determine life at the molec-
ular level. Similar to proteins, RNA plays central roles in living organisms including genetic
regulation or information transfer. RNA structure and function are closely coupled yet struc-
turally resolving RNAs is experimentally challenging. In silico structure prediction techniques
can complement experimental efforts to gain structural information. Here, we explore how
replica-exchange molecular dynamics (REX) enhanced with contact data can be used to predict
RNA tertiary structure. Such contact data can be obtained by statistical inference of spatial ad-
jacency in the exponentially growing sequence databases via methods such as direct coupling
analysis. Our computational approach can thus complement experimental efforts and predict
biomolecular structure for a class of biomolecules, which is structurally less explored than pro-
teins. We test this approach on three different structured RNA. We find that contact-guided
REX is capable of improving models of a RNA structure and can deliver physically reasonable
3D structures.

1 Introduction

The incredible advances in sequencing techniques have lead to an exponential growth of
RNA sequence data1. The development of improved statistical methods and alignment
software allows building multiple sequence alignment data (MSA) based on inferring
structural or even functional relations within and between phylogenetic trees2–8. Freely
accessible databases such as UniProt, the protein family (Pfam) and RNA family databases
(Rfam) offer a treasure trove of sequence information on both proteins and ribonucleic
acids (RNA)9–11. In the last decade, direct coupling analysis (DCA) and similar methods
have distilled this information to predict spatial adjacency based on co-evolution by stati-
cally identifying linked mutational patterns12–18. Similar to using experimental information
as restraints19–21, contact information can be used as structural restraints to build biomolec-
ular models of, e.g., protein complexes12 or conformational transitions22 even on a large
scale23 or to redesign protein signalling24. More recently, data-driven machine-learning
(ML) methods have shown to astonishingly enhance protein 3D structure prediction25–27.
These ML approaches, however, rely on deep neural networks with an accordingly massive
number of free parameters. Naturally, training these deep networks require equally very
large datasets of structurally known 3D structures and accompanying MSAs. As only a
limited number of available experimentally resolved structures exist for RNA, these meth-
ods cannot be directly transferred to them28, 29. It is, however, possible to improve RNA
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contact prediction16, 18 by shallow learning approaches30 with limited amounts of parame-
ters.

In the current study, we tested to what extend molecular dynamics can structurally pre-
dict RNA or stabilise its native state. We will compare approaches based on regular molec-
ular dynamics (MD), replica exchange (REX) and contact enhanced molecular dynamics
(REX bias). REX is a parallel implementation of MD by running multiple non-interacting
copies of the system in parallel at different temperatures31–33. Switching between different
temperatures allows overcoming entrapment in local minima. As REX maintains ther-
modynamically correct ensembles during the simulation, such simulations offer not only
a structure prediction method but also the possibility to derive, e.g., partitions sums. As
partition sums allow to derive basically arbitrary thermodynamic properties of a system,
such simulations can also provide insight into the physical properties that drive structure
adoption. The conducted study is thus similar to our prior work on proteins, where we
compared MD vs. REX and carefully investigated optimal weight and bias potentials34a.
We additionally compare our results to another prior study30, where we used SimRNA35

for RNA structure prediction. SimRNA is based on a Monte-Carlo approach for the sam-
pling of the RNA conformational space and a statistical potential to evaluate the energy of
the configuration.

2 Results

Method Backbone RMSD (Å)
3d2g 4tzx 4yaz

MD ref 7.6 3.8 20.4
REX ref 7.4 3.6 20.3
REX biased† 5.0 4.0 15.8
SimRNA 15.7 7.5 16.1
SimRNA + mfDCA† 8.5 3.0 20.1
SimRNA + CoCoNet† 16.2 7.8 14.0

Table 1. Lowest observed RMSD values of performed RNA MD simulations. Listed are the method, PDB
ids and backbone RMSDs with respect to the native fold. Values are obtained via own simulations (upper half) or
other methods (lower half, obtained from SI of Ref. 30). Best cases are highlighted for each RNA target. †: Cases
with L bias contacts (L: sequence length).

The tested RNA targets were the TPP riboswitch (PDB id: 3d2g36), Adenine riboswitch
(PDB id: 4tzx37), and the 3’,3’-cGAMP riboswitch (PDB id: 4yaz38). To mimic DCA-
based contacts, we added L native contacts (L is the sequence length) into the biased
simulations. These contacts were randomly chosen from the native contact map, as seen
in Fig. 4. While “real” DCA data would also include erroneous contact data, using only
native contacts serves as a first baseline to test the possible improvement. In Tab. 1 we

aIt should be noted that biasing potentials can be corrected after simulation to regain unbiased thermodynamic
equilibrium/properties.
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Figure 1. RMSD comparison of simulations with TPP riboswitch (PDB id: 3d2g36). Backbone RMSD of MD
trajectories at 280 K. MD simulations were performed with five unique starting conformations (decoys). (A) MD
without bias. (B) REX without bias. (C) REX with bias.

summarised the lowest observed RMSD values with respect to the native fold we found in
our simulations. Figs. 1 to 3 show a comparison of MD and REX simulations.

In the case of TPP riboswitch (cf. Fig. 1) RMSD values reached approx. 5 Å during
our simulations. Our REX bias strongly outperformed all other methods, whereas nor-
mal REX reached values of 7.4 Å and biased SimRNA with added mean field DCA14 only
8.5 Å. In the case of the second RNA target, i.e. Adenine riboswitch (cf. Fig. 2), nor-
mal REX achieved 3.6 Å and performed slightly better than the biased variant with 4.0 Å.
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Figure 2. RMSD comparison of simulations with Adenine riboswitch (PDB id: 4tzx37). Backbone RMSD
of MD trajectories at 280 K. MD simulations were performed with five unique starting conformations (decoys).
(A) MD without bias. (B) REX without bias. (C) REX with bias.

SimRNA + mean field DCA yielded the best results with an RMSD of 3.0 Å. We want to
emphasise that our applied force field seems for these cases to be very accurate and reli-
able, which is reflected in the good RMSD statistics of the performed MD simulations for
both TPP riboswitch and Adenine riboswitch. Furthermore, the Adenine riboswitch seems
to be very flexible by nature. The attractive force resulting from the applied bias potential
was found to be too strong and resulted in a slight local bending of the RNA structure,
which is reflected in the higher RMSD values as compared to the unbiased case. Lastly,
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Figure 3. RMSD comparison of simulations with 3’,3’-cGAMP riboswitch (PDB id: 4yaz38). Backbone
RMSD of MD trajectories at 280 K. MD simulations were performed with five unique starting conformations
(decoys). (A) MD without bias. (B) REX without bias. (C) REX with bias.

the comparison of the 3’,3’-cGAMP riboswitch simulations are shown in Fig. 3. Our per-
formed simulations yield the best results for the biased REX case, yet again. We want to
stress, however, that the overall poor performance might have two courses. Either a) the
force fields struggle with this particular example or b) the structure of the 3’,3’-cGAMP
riboswitch was experimentally measured as a dimer which is not reflected in the simula-
tions, where we used only one molecule chain. Due to the missing counterpart and their
physical interactions, the simulations would more likely to adopt non-native other struc-
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A B C

Figure 4. Contact map of (A) TPP riboswitch (PDB id: 3d2g36), (B) Adenine riboswitch (PDB id: 4tzx37)
and (C) 3’,3’-cGAMP riboswitch (PDB id: 4yaz38). Displayed are the native contacts (gray) and 75/70/80
randomly selected true-positive bias contacts (green) used in the respective REX-Bias simulations.

tures and therefore all methods led to relatively high RMSD values. While the biased REX
simulations yielded values of 15.8 Å, SimRNA + CoCoNet was capable to achieve 14.0 Å.
As all compared methods struggle, we tend to assume that b), i.e. the dimeric nature, is the
source of the poor quality predictions.

3 Discussion and Summary

Overall, the application of contact-guided biased REX was able to provide low RMSD
structures in two cases with one case only leading to poor quality structure. The poor
performance of the third case can likely be attributed to its dimeric nature. There are
several future avenues. First, DCA or related methods cannot reliably predict high numbers
of error-free contacts. Future simulations should probe the methods robustness towards
being fed erroneous contact information. Second the applied bias potential was optimised
for proteins and not for RNAs. Hence, this method might or even should yield even better
results once the bias potential has been optimised/ fine tuned specifically for RNA targets.
Nevertheless, contact-guided REX provides good results which are on par with the best
performances of the other mentioned methods, as shown in Tab. 1.

4 Methods

Each REX simulation had 60 replicas and a total of 20 unique starting conformations/
decoys (cf. Tab. 2). The temperatures were distributed covering a range of 280K to 370K.
Time steps were set to 2 fs and exchange attempts each 500 MD steps. Exchange rates over
the duration of the simulation were in the order of 10 − 15%. The all-atom simulations
of this study utilised the OL15 nucleic force field39, 40 and TIP3P41 explicit water model.
All MD simulations are performed using GROMACS 202042 with cube-shaped systems
boxes with periodic boundary conditions (PBC). For all simulations, we use a leap-frog
integrator, V-rescale thermostat and Parrinello-Rahman barostat. For evaluation we used
our toolkit pyrexMD43.
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Replica Decoy RMSD (Å) Replica Decoy RMSD (Å)
number 3d2g 4tzx 4yaz number 3d2g 4tzx 4yaz

1/21/41 10.96 9.37 21.45 11/31/51 12.64 7.67 23.35
2/22/42 13.55 7.49 23.31 12/32/52 14.13 6.57 22.89
3/23/43 12.41 6.23 23.28 13/33/53 12.60 7.88 22.58
4/24/44 13.95 9.68 21.56 14/34/54 13.20 8.65 21.54
5/25/45 12.45 7.47 22.48 15/35/55 14.32 9.37 23.57
6/26/46 13.03 11.24 24.68 16/36/56 11.15 7.78 22.53
7/27/47 13.08 8.49 20.86 17/37/57 10.97 7.78 24.90
8/28/48 10.94 8.90 24.58 18/38/58 12.58 10.57 24.35
9/29/49 13.21 9.41 22.35 19/39/59 13.58 9.19 21.29

10/30/50 11.85 10.30 21.80 20/40/60 12.79 9.19 21.45

Table 2. Starting decoy accuracy of performed REX simulations. Table shows the corresponding replica
numbers, PDB ids of RNA targets and backbone root-mean-square-deviation (RMSD) before the simulation
started.
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