000917158 001__ 917158
000917158 005__ 20230522110535.0
000917158 0247_ $$2doi$$a10.1021/acs.nanolett.2c00432
000917158 0247_ $$2ISSN$$a1530-6984
000917158 0247_ $$2ISSN$$a1530-6992
000917158 0247_ $$2Handle$$a2128/33534
000917158 0247_ $$2pmid$$a35759639
000917158 0247_ $$2WOS$$aWOS:000821851000001
000917158 037__ $$aFZJ-2023-00390
000917158 082__ $$a660
000917158 1001_ $$0P:(DE-Juel1)162163$$aLüpke, Felix$$b0$$eCorresponding author
000917158 245__ $$aQuantum Spin Hall Edge States and Interlayer Coupling in Twisted Bilayer WTe 2
000917158 260__ $$aWashington, DC$$bACS Publ.$$c2022
000917158 3367_ $$2DRIVER$$aarticle
000917158 3367_ $$2DataCite$$aOutput Types/Journal article
000917158 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1673536991_13721
000917158 3367_ $$2BibTeX$$aARTICLE
000917158 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000917158 3367_ $$00$$2EndNote$$aJournal Article
000917158 520__ $$aThe quantum spin Hall (QSH) effect, characterized by topologically protected spin-polarized edge states, was recently demonstrated in monolayers of the transition metal dichalcogenide (TMD) WTe2. However, the robustness of this topological protection remains largely unexplored in van der Waals heterostructures containing one or more layers of a QSH insulator. In this work, we use scanning tunneling microscopy and spectroscopy (STM/STS) to explore the topological nature of twisted bilayer (tBL) WTe2. At the tBL edges, we observe the characteristic spectroscopic signatures of the QSH edge states. For small twist angles, a rectangular moiré pattern develops, which results in local modifications of the band structure. Using first-principles calculations, we quantify the interactions in tBL WTe2 and its topological edge states as a function of interlayer distance and conclude that it is possible to engineer the topology of WTe2 bilayers via the twist angle as well as interlayer interactions.
000917158 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000917158 536__ $$0G:(GEPRIS)443416235$$aDFG project 443416235 - 1D topologische Supraleitung und Majorana Zustände in van der Waals Heterostrukturen charakterisiert durch Rastersondenmikroskopie $$c443416235$$x1
000917158 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000917158 7001_ $$00000-0003-3588-0039$$aWaters, Dacen$$b1
000917158 7001_ $$0P:(DE-HGF)0$$aPham, Anh D.$$b2
000917158 7001_ $$0P:(DE-HGF)0$$aYan, Jiaqiang$$b3
000917158 7001_ $$00000-0003-3616-7104$$aMandrus, David G.$$b4
000917158 7001_ $$00000-0002-7170-2902$$aGanesh, Panchapakesan$$b5
000917158 7001_ $$0P:(DE-HGF)0$$aHunt, Benjamin M.$$b6
000917158 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/acs.nanolett.2c00432$$gVol. 22, no. 14, p. 5674 - 5680$$n14$$p5674 - 5680$$tNano letters$$v22$$x1530-6984$$y2022
000917158 8564_ $$uhttps://juser.fz-juelich.de/record/917158/files/acs.nanolett.2c00432.pdf
000917158 8564_ $$uhttps://juser.fz-juelich.de/record/917158/files/2010.13699.pdf$$yOpenAccess
000917158 909CO $$ooai:juser.fz-juelich.de:917158$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000917158 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162163$$aForschungszentrum Jülich$$b0$$kFZJ
000917158 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000917158 9141_ $$y2022
000917158 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-30
000917158 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-30
000917158 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-30
000917158 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-30
000917158 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNANO LETT : 2021$$d2022-11-30
000917158 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-30
000917158 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-30
000917158 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000917158 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-30
000917158 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO LETT : 2021$$d2022-11-30
000917158 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-30
000917158 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-30
000917158 920__ $$lyes
000917158 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
000917158 980__ $$ajournal
000917158 980__ $$aVDB
000917158 980__ $$aUNRESTRICTED
000917158 980__ $$aI:(DE-Juel1)PGI-3-20110106
000917158 9801_ $$aFullTexts