000917159 001__ 917159
000917159 005__ 20230224084253.0
000917159 0247_ $$2doi$$a10.1103/PhysRevB.105.035423
000917159 0247_ $$2ISSN$$a2469-9950
000917159 0247_ $$2ISSN$$a2469-9977
000917159 0247_ $$2ISSN$$a0163-1829
000917159 0247_ $$2ISSN$$a0556-2805
000917159 0247_ $$2ISSN$$a1095-3795
000917159 0247_ $$2ISSN$$a1098-0121
000917159 0247_ $$2ISSN$$a1538-4489
000917159 0247_ $$2ISSN$$a1550-235X
000917159 0247_ $$2ISSN$$a2469-9969
000917159 0247_ $$2Handle$$a2128/33555
000917159 0247_ $$2WOS$$aWOS:000752490700003
000917159 037__ $$aFZJ-2023-00391
000917159 082__ $$a530
000917159 1001_ $$0P:(DE-Juel1)162163$$aLüpke, Felix$$b0$$eCorresponding author
000917159 245__ $$aLocal manifestations of thickness-dependent topology and edge states in the topological magnet MnBi 2 Te 4
000917159 260__ $$aWoodbury, NY$$bInst.$$c2022
000917159 3367_ $$2DRIVER$$aarticle
000917159 3367_ $$2DataCite$$aOutput Types/Journal article
000917159 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1673601937_32709
000917159 3367_ $$2BibTeX$$aARTICLE
000917159 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000917159 3367_ $$00$$2EndNote$$aJournal Article
000917159 520__ $$aThe interplay of nontrivial band topology and magnetism gives rise to a series of exotic quantum phenomena, such as the emergent quantum anomalous Hall (QAH) effect and topological magnetoelectric effect. Many of these quantum phenomena have local manifestations when the global symmetry is broken. Here, we report local signatures of the thickness-dependent topology in intrinsic magnetic topological insulator MnBi2Te4 (MBT), using scanning tunneling microscopy and spectroscopy on molecular beam epitaxy grown MBT thin films. A thickness-dependent band gap is revealed, which we reproduce with theoretical calculations. Our theoretical results indicate a topological quantum phase transition beyond a film thickness of one monolayer, with alternating QAH and axion insulating states for odd and even layers, respectively. At step edges, we observe localized electronic states, in general agreement with axion insulator and QAH edge states, respectively, indicating topological phase transitions across the steps. The demonstration of thickness-dependent topological properties highlights the role of nanoscale control over novel quantum states, reinforcing the necessity of thin film technology in quantum information science applications
000917159 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000917159 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000917159 7001_ $$0P:(DE-HGF)0$$aPham, Anh D.$$b1
000917159 7001_ $$aZhao, Yi-Fan$$b2
000917159 7001_ $$aZhou, Ling-Jie$$b3
000917159 7001_ $$aLu, Wenchang$$b4
000917159 7001_ $$00000-0003-4398-3492$$aBriggs, Emil$$b5
000917159 7001_ $$00000-0002-9981-8851$$aBernholc, Jerzy$$b6
000917159 7001_ $$00000-0002-6786-9697$$aKolmer, Marek$$b7
000917159 7001_ $$aTeeter, Jacob$$b8
000917159 7001_ $$00000-0002-6155-1485$$aKo, Wonhee$$b9
000917159 7001_ $$00000-0003-3515-2955$$aChang, Cui-Zu$$b10
000917159 7001_ $$aGanesh, Panchapakesan$$b11
000917159 7001_ $$aLi, An-Ping$$b12
000917159 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.105.035423$$gVol. 105, no. 3, p. 035423$$n3$$p035423$$tPhysical review / B$$v105$$x2469-9950$$y2022
000917159 8564_ $$uhttps://juser.fz-juelich.de/record/917159/files/PhysRevB.105.035423.pdf$$yOpenAccess
000917159 909CO $$ooai:juser.fz-juelich.de:917159$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000917159 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162163$$aForschungszentrum Jülich$$b0$$kFZJ
000917159 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000917159 9141_ $$y2022
000917159 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000917159 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-11
000917159 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2022-11-11
000917159 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-11
000917159 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000917159 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-11
000917159 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000917159 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-11
000917159 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-11
000917159 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000917159 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-11
000917159 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2021$$d2022-11-11
000917159 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000917159 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000917159 920__ $$lyes
000917159 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
000917159 980__ $$ajournal
000917159 980__ $$aVDB
000917159 980__ $$aUNRESTRICTED
000917159 980__ $$aI:(DE-Juel1)PGI-3-20110106
000917159 9801_ $$aFullTexts