001     917159
005     20230224084253.0
024 7 _ |a 10.1103/PhysRevB.105.035423
|2 doi
024 7 _ |a 2469-9950
|2 ISSN
024 7 _ |a 2469-9977
|2 ISSN
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 1538-4489
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2469-9969
|2 ISSN
024 7 _ |a 2128/33555
|2 Handle
024 7 _ |a WOS:000752490700003
|2 WOS
037 _ _ |a FZJ-2023-00391
082 _ _ |a 530
100 1 _ |a Lüpke, Felix
|0 P:(DE-Juel1)162163
|b 0
|e Corresponding author
245 _ _ |a Local manifestations of thickness-dependent topology and edge states in the topological magnet MnBi 2 Te 4
260 _ _ |a Woodbury, NY
|c 2022
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1673601937_32709
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The interplay of nontrivial band topology and magnetism gives rise to a series of exotic quantum phenomena, such as the emergent quantum anomalous Hall (QAH) effect and topological magnetoelectric effect. Many of these quantum phenomena have local manifestations when the global symmetry is broken. Here, we report local signatures of the thickness-dependent topology in intrinsic magnetic topological insulator MnBi2Te4 (MBT), using scanning tunneling microscopy and spectroscopy on molecular beam epitaxy grown MBT thin films. A thickness-dependent band gap is revealed, which we reproduce with theoretical calculations. Our theoretical results indicate a topological quantum phase transition beyond a film thickness of one monolayer, with alternating QAH and axion insulating states for odd and even layers, respectively. At step edges, we observe localized electronic states, in general agreement with axion insulator and QAH edge states, respectively, indicating topological phase transitions across the steps. The demonstration of thickness-dependent topological properties highlights the role of nanoscale control over novel quantum states, reinforcing the necessity of thin film technology in quantum information science applications
536 _ _ |a 5213 - Quantum Nanoscience (POF4-521)
|0 G:(DE-HGF)POF4-5213
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Pham, Anh D.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Zhao, Yi-Fan
|b 2
700 1 _ |a Zhou, Ling-Jie
|b 3
700 1 _ |a Lu, Wenchang
|b 4
700 1 _ |a Briggs, Emil
|0 0000-0003-4398-3492
|b 5
700 1 _ |a Bernholc, Jerzy
|0 0000-0002-9981-8851
|b 6
700 1 _ |a Kolmer, Marek
|0 0000-0002-6786-9697
|b 7
700 1 _ |a Teeter, Jacob
|b 8
700 1 _ |a Ko, Wonhee
|0 0000-0002-6155-1485
|b 9
700 1 _ |a Chang, Cui-Zu
|0 0000-0003-3515-2955
|b 10
700 1 _ |a Ganesh, Panchapakesan
|b 11
700 1 _ |a Li, An-Ping
|b 12
773 _ _ |a 10.1103/PhysRevB.105.035423
|g Vol. 105, no. 3, p. 035423
|0 PERI:(DE-600)2844160-6
|n 3
|p 035423
|t Physical review / B
|v 105
|y 2022
|x 2469-9950
856 4 _ |u https://juser.fz-juelich.de/record/917159/files/PhysRevB.105.035423.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:917159
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)162163
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5213
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-11
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-11
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-11
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-11
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-11
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV B : 2021
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-11
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|k PGI-3
|l Quantum Nanoscience
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21