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Abstract

To measure electrochemical pressure impedance spectra, oscillating pressure gradient is applied at the PEM fuel cell
channel inlet or outlet. A model for air flow velocity oscillations induced by the AC pressure gradient is developed. The
Nyquist spectrum of velocity oscillations has a form of a parallel RC–circuit electric impedance. Due to viscous forces,
the amplitude of oscillations decays with the frequency. Analytical solution allows one to estimate this amplitude and
the characteristic frequency of damping. A dominating effect of velocity oscillations on the pressure impedance at low
air flow stoichiometries is demonstrated.
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1. Introduction

In recent years, electrochemical pressure impedance
spectroscopy (EPIS) has attracted attention of PEM fuel
cell community as a useful tool for cell testing and charac-
terization. The idea of EPIS suggested by Niroumand et
al. [1] is simple: AC pressure perturbation δp is applied
at the cathode channel inlet or outlet leads to oscillations
of oxygen concentration δc in the cell. Due to oxygen
reduction reaction (ORR), δc induces oscillations of the
cell potential δV . The ratio δV/δc or δV/δp is the EPIS
spectrum containing information on the oxygen and water
transport processes in the cell cathode [2–8].

Basically, there are two options to produce δc: either,
by perturbing pressure at the channel inlet or outlet [2, 6–
8], or by periodic admixing oxygen concentration to the
inlet flow, keeping the pressure as constant as possible [3–
5]. For the reasons discussed below, it would be natural
to name the second method electrochemical concentration
impedance spectroscopy (ECIS).

The amplitude of pressure/concentration perturbation
is usually selected to get small (linear) but measurable
response of δV . Much less attention has been paid to
the flow velocity oscillations (FVO) induced by the AC
pressure perturbation. Numerical model of ECIS [3–5] ig-
nores FVO, though admixing oxygen induces inlet pres-
sure perturbation on the order of 30 Pa [5]. Below, we will
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show that this leads to quite a significant effect of FVO
on concentration/pressure impedance spectra. The works
reported numerical EPIS models [6, 7] contain no informa-
tion on FVO in the channel and the role of FVO remains
unclear.

It should be noted that the typical pressure perturba-
tion in EPIS experiments is on the order of several kPa [8,
9], while in ECIS experiments this perturbation does not
exceed 30 Pa [5]. Pressure signal in EPIS perturbs trans-
port of liquid water in the cell, while in ECIS this effect is
seemingly small. Below, we will be focused on the effect
of velocity oscillations in channel; the transport of liquid
water in the cell is out of the scope of this work.

In this work, a model for oscillating flow in a tube
suggested by Sexl [10] is used to rationalize the pressure–
induced FVO in a PEM fuel cell cathode channel under
conditions of EPIS experiment. Analytical expression for
mean over the channel radius FVO amplitude shows that
viscous forces damp oscillations at the frequencies above
ν/R2

h, where ν is the air kinematic viscosity and Rh is the
channel radius. The maximal FVO amplitude is achieved
at low frequencies; it is proportional to the channel cross
section area and to the applied pressure gradient. An ex-
ample of EPIS spectrum taking into account FVO is cal-
culated. The spectrum shows dominating contribution of
the FVO to pressure impedance, meaning that the primary
effect of pressure oscillations on the oxygen concentration
in the catalyst layer is indirect, due to variation of air flow
velocity in the channel.
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2. Model and Methods

The speed of sound in air at 60◦C is 365 m s−1, there-
fore, for the channel length on the order of 1 m, propaga-
tion of sound wave takes about τs = 1/365 ≃ 2.74 · 10−3 s.
This time corresponds to the frequency fs = 1/(2πτs) ≃ 58
Hz, i.e., for the frequencies below fmin ≃ 10 Hz, propaga-
tion of sound wave equilibrating pressure gradient along
the channel can be considered as immediate. Thus, for
the low frequencies it does not matter whether the pres-
sure perturbation is applied at the inlet or outlet; the effect
is the same. Note that for shorter channels on the order of
10 cm, fmin exceeds 100 Hz. Note also that here we ignore
the effect of humidifier volume on pressure perturbation.
This effect will be discussed below.

Oscillations of flow velocity induced by the applied
pressure perturbations can be rationalized using the model
developed by Sexl [10]. For simplicity we will consider
channel of a circular form. Hydrogen molecular weight
is much smaller than that of oxygen and to a good ap-
proximation flow velocity variation due to replacement of
O2 molecule by two H2O molecules in the air flow can be
neglected.

Let the axis z be directed along the channel of the
radius Rh and the length L. As discussed above, subsonic
air flow in the channel is incompressible. The laminar flow
of incompressible fluid in a circular channel has a single,
independent of z axial velocity component w [11]. The
Navier–Stokes equation for w(t, r) has the form
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where t is time, r is the radial coordinate, ν is the air
kinematic viscosity, ρ is the air density, and ∂p/∂z is the
independent of z pressure gradient.
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Eq.(1) takes the form
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Here, i∗ is the ORR volumetric exchange current density,
cinh is the reference oxygen concentration, pin is the static
inlet pressure of the flow, ⟨w0⟩ is the average over channel
radius steady–state flow velocity, and

ϕ =
R2

hp
in

ρν⟨w0⟩L
(4)

is the only dimensionless parameter in the problem. Eq.(3)
is linear; substituting perturbations of the form

w̃ = w̃0(r̃) + w̃1(r̃, ω̃) exp(iω̃t̃)

p̃ = p̃in(z̃) + p̃1(z̃) exp(iω̃t̃)
(5)

and subtracting the static equation for w̃0, we get equation
for the perturbation amplitude w̃1:
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= 0, w̃1(1) = 0 (6)

Here, the subscripts 0 and 1 mark the static and perturbed
variables, respectively, ∂p̃1/∂z̃ is the amplitude of applied
pressure perturbation gradient, which can be calculated
simply by dividing p̃1 by the channel length z̃ = 1. The
left boundary condition for Eq.(6) means symmetry of the
solution at the channel axis, and the right boundary condi-
tion is “no-slip” one. Note that due to linearity of Eq.(3),
smallness of |∂p̃1/∂z̃| and w̃1 is, in general, not required;
Eq.(6) describes perturbation of an arbitrary amplitude.

3. Results and discussion

Solution to Eq.(6) is [10]:
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where J0 is the Bessel function.
The features of w̃1 radial shape have been discussed

in [10]. For EPIS of particular interest is the frequency
dependence of average over the radius velocity perturba-
tion ⟨w̃1⟩
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Calculation of integral (8) with Eq.(7) gives
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where I is the modified Bessel function of the first kind,
and L is the modified Struve function.

The Nyquist spectrum of Eq.(9) has the form of a par-
allel RC–circuit electric impedance (Figure 1). Numerical
calculations show that the peak of − Im

(
⟨w̃1⟩

)
(Figure 1b)

is located at the characteristic frequency f∗, which is well
described by

f∗ ≃ ν

R2
h

. (10)

Figure 2 shows the frequency dependence of the mod-
ulus and phase angle of oscillations. At small frequencies
of the AC signal, flow velocity oscillates in–phase with
the pressure and − Im

(
⟨w̃1⟩

)
is small. However, near the

2



0.0 0.5 1.0 1.5
Re(w1), cm s 1

0.00

0.25

0.50

0.75

- I
m

(w
1 )

, c
m

 s
1 (a)

10 1 100 101 102 103 104

frequency / Hz

0.0

0.5

1.0

1.5

R
e(

w
1 )

, -
Im

(w
1 )

, c
m

 s
1

(b)

real
imag

Figure 1: (a) The Nyquist spectrum of velocity pulsations in the
channel, Eq.(9). (b) The frequency dependence of real and imaginary
part of Eq.(9). Parameters for the calculation are listed in the upper
part of Table 1.

frequency f∗, Eq.(10), the viscous friction induces a phase
shift and the imaginary component of velocity grows. Above
f∗, the phase angle between pressure and velocity further
increases (Figure 2); in addition, the viscous forces damp
the oscillations amplitude, and both the real and imagi-
nary parts of ⟨w̃1⟩ decay (Figure 2).

In the limit of ω̃ → 0, Eq.(9) in the dimension form
reduces to the classic result

lim
ω→0

⟨w1⟩ = R2
h

6ρν

∣∣∣∣∂p1∂z

∣∣∣∣ (11)

Eq.(11) gives the contribution to steady–state flow veloc-
ity due to the static pressure gradient ∂p1/∂z (Ref. [11]).
Eq.(11) gives also the estimate for FVO maximal ampli-
tude, which is achieved in the low frequency region (below
10 Hz in Figure 2a). Note that this amplitude is propor-
tional to the channel cross section area and to the pressure
gradient.

The amplitude p1 is usually selected to keep the cell
potential perturbations small for the sake of linearity, but
sufficiently large to neglect the electric noise. However,
the effect of p1 on FVO amplitude is usually behind the
scene. For example, in experiments [7], the channel cross–
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Figure 2: (a) The modulus and (b) the phase angle of velocity oscil-
lations in the channel, Eq.(9).

Channel depth h and width, m 0.1 · 10−2

Channel length L, m 1.0
Inlet pressure pin, Pa 105

Pressure perturbation amplitude p1, Pa 10
Cell temperature T , K 273 + 65
Air density, ρ, kg m−3 1.06
Air kinematic viscosity, ν, m2 s−1 1.886 · 10−5

Cell current density J , A m−2 0.1 · 104
Air flow stoichiometry λ, 2.0
Cell current density J , A m−2 103

Tafel slope b, V 0.03
Double layer capacitance Cdl, F cm−3 20
Exchange current density i∗, A m−3 103

Oxygen diffusion coefficient
in the CCL [12], Dox, m

2 s−1 2 · 10−8

Oxygen diffusion coefficient
in the GDL [12], Db, m

2 s−1 2 · 10−6

Catalyst layer thickness lt, m 10 · 10−6

Gas diffusion layer thickness lb, m 250 · 10−6

Table 1: The cell parameters used in calculations. This is a typical
set of parameters for laboratory PEMFC.
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section area was A = 3.08·10−7 m2 and the channel length
0.304 m. The pressure perturbation amplitude applied to
this channel was 100 Pa. Taking for the estimate πR2

h =
A, from Eq.(11) we get quite a significant low–frequency
velocity oscillations amplitude about 0.24 m s−1.

The effect of FVO on EPIS spectra of PEMFCs can
be demonstrated using a plug–flow oxygen mass transport
equation in channel:

∂ch
∂t

+
(
⟨w0⟩+ ⟨w1⟩

) ∂ch
∂z

= − Db

h

∂cb
∂x

∣∣∣∣
x=lt+lb

(12)

where ch is the oxygen concentration in channel, Db is the
oxygen diffusion coefficient in the GDL of a thickness lb,
lt is the CCL thickness, h is the channel depth. The right
side of Eq.(12) describes oxygen “sink” from the chan-
nel flow through the channel/GDL interface. Substituting
ch = c0h+c1h, c1h ≪ c0h into Eq.(12), subtracting the static
equation for c̃0h and neglecting the term w1∂c1h/∂z, we get
an equation for the small oscillating component c1h
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1
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With the dimensionless variables Eq.(2), Eq.(13) takes the
form
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where
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is the air flow stoichiometry,
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and the dimensionless mean current density and GDL oxy-
gen diffusivity are given by

j̃ =
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, D̃b =
4FDbc

in
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Note that in Eq.(16) circular channel cross–section area is
replaced by the square channel area using πR2

h = h2.
Substituting Fourier–transforms

c̃1h(t̃, z̃) = c̃1h(ω̃, z̃) exp(iω̃t̃),

c̃1b(t̃, x̃) = c̃1b(ω̃, x̃) exp(iω̃t̃),

⟨w̃1(t̃)⟩ = ⟨w̃1(ω̃)⟩ exp(iω̃t̃)
(18)

into Eq.(14) and taking into account that λJ̃∂c̃0h/∂z̃ =

−j̃0(z̃) = −fλJ̃ (1− 1/λ)
z̃
(Ref. [13]) we finally get equa-

tion for the small perturbation amplitude c̃1h in the ω̃–space
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where

fλ = −λ ln

(
1− 1

λ

)
, (20)

and ⟨w̃1⟩ is given by Eq.(9). Eq.(19) describes transport of
the inlet oxygen perturbation along the channel taking into
account FVO and oxygen ”sink” to the GDL. Through–
plane oxygen and proton transport equations leading to

the formula for the term D̃b∂c̃
1
b/∂x̃

∣∣∣
x̃=1+l̃b

in Eq.(19) are

described in [14]; the details of ζ calculation will be pub-
lished elsewhere.

The concentration/pressure impedance calculated us-
ing Eq.(19), the model [14], and the parameters in Ta-
ble 1 is shown in Figure 3. The contribution of term
with the FVO ⟨w̃1⟩ is dominating: without this term, the
spectrum diameter “shrinks” by an order of magnitude
(Figure 4) and the high–frequency part of the spectrum
changes strongly (cf. Figures 3 and 4). The main effect
of pressure perturbation on the oxygen concentration in
the cell is, thus, indirect, due to variation of air flow ve-
locity in the cathode channel. Physically, oscillations of
flow velocity in the channel are equivalent to oscillations
of air stoichiometry. At low static stoichiometry, harmonic
perturbation of this parameter strongly affect the spectra
already at very low (10 Pa) amplitude of pressure pertur-
bation due to effective perturbation of λ.

With the growth of λ, the Nyquist spectrum diameter
strongly reduces (Figure 3). This effect has been reported
in experiments of Engebretsen et al. [2] and Zhang et al.
[8]. The effect of velocity oscillations on the EPIS spectra
is thus maximal at low air flow stoichiometries.

Further, strong effect of FVO means that the flow field
geometry determines the shape of EPIS spectra. In other
words, EPIS spectra are best suited for studying the re-
sistivity of oxygen transport in the flow field. At low sto-
ichiometry, the EPIS spectra are only weakly sensitive to
the oxygen transport in porous layers. For example, dou-
bling of the GDL oxygen diffusivity practically does not
change the spectra in Figure 3.

Experimental EPIS spectrum reported in Schiffer et
al. [7] is shown in Figure 5. The model above does not
take into account transients caused by the liquid water
transport in the porous layers, and fitting the model to
experimental spectra makes no sense. At this stage we
can only note the similarity of model and experimental
spectra.

Air supplied to the fuel cell cathode is usually humidi-
fied by passing through the humidifier. The presence of hu-
midifier volume induces the phase shift between the pres-
sure applied at the channel inlet and the inlet pressure [7].
The phase shift does not reduce the effect of FVO dis-
cussed above, but it makes interpretation of EPIS spectra
even more complicated.

Finally we note that the phase shift of velocity oscil-
lations varies in the range of 0.1 Hz to 103 Hz, as Figure
2b shows. Thus, below 0.1 Hz the effect of velocity oscil-
lation on the spectra reduces to mere perturbation of the
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Figure 3: (a) The Nyquist spectrum of pressure impedance calculated
using the model [14] and Eq.(19). (b) The frequency dependence of
real and imaginary part of the spectrum in (a).
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Figure 4: (a) The Nyquist spectrum of pressure impedance calculated
using the model [14] and Eq.(19) with zero FVO, ⟨w̃1⟩ = 0. (b) The
frequency dependence of real and imaginary part of the spectrum in
(a).
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Figure 5: (a) The Nyquist spectrum of pressure impedance reported
in [7]. The data are digitized from Figure 5 of [7]. (b) The frequency
dependence of real and imaginary part of the spectrum in (a).

air flow stoichiometry. However, above 0.1 Hz the FVO
changes the phase of oxygen concentration perturbation
transported in the channel and it affects the EPIS spec-
trum in a more complicated way. Comparison of the spec-
tra in Figures 3b and 4b shows that the peaks of − Im (ζ)
and the valleys of Re (ζ) are located at different frequen-
cies. This is due to the phase shift induced by FVO.

4. Conclusions

Analytical solution of a problem for the flow with oscil-
lating velocity in a circular channel [10] is used to rational-
ize the effect of velocity oscillations on pressure impedance
spectra of a PEMFC. Simple formulas for the average over
channel radius axial flow velocity induced by the oscillating
pressure gradient and for its static limit are derived. The
characteristic frequency of the FVO is proportional to the
air kinematic viscosity and inversely proportional to the
channel cross section area. Numerical calculations show
that at low air stoichiometries, the contribution of FVO to
the cell pressure impedance dominates. This means that
the main effect of pressure perturbations on the oxygen
concentration is indirect, due to the flow velocity oscilla-
tions.
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Nomenclature

˜ Marks dimensionless variables
cb Oxygen molar concentration in the GDL, mol m−3

ch Oxygen concentration in the channel, mol m−3

cinh Reference (inlet) oxygen concentration, mol m−3

Db Oxygen diffusion coefficient in the GDL, m2 s−1

F Faraday constant, C mol−1

i Imaginary unit
J Mean cell current density, A m−2

h Square channel depth, m
L Channel length, m
lt CCL thickness, m
lb GDL thickness, m
p Pressure, Pa
Rh Circular channel radius, m
r Radial coordinate, cm
T Cell temperature, K
t Time, s
w Axial flow velocity in the channel, m s−1

⟨w⟩ Average over the channel radius flow velocity, m s−1

x Coordinate through the cell, m
z Axial coordinate along the channel, m

Subscripts:

b GDL
h Channel

Superscripts:

0 Steady–state value
1 Small–amplitude perturbation

Greek:

ζ Concentration impedance, V m3 mol−1

λ Air flow stoichiometry
ν Air kinematic viscosity, m2 s−1

ρ Air density, kg m−3

σp CCL proton conductivity, S m−1

ϕ Dimensionless parameter, Eq.(4)
χ Auxiliary dimensionless parameter, Eq.(16)
ω Angular frequency of the AC signal, s−1
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Figure captions

1. (a) The Nyquist spectrum of velocity pulsations in the
channel, Eq.(9). (b) The frequency dependence of real
and imaginary part of Eq.(9). Parameters for the calcu-
lation are listed in the upper part of Table 1.

2. (a) The modulus and (b) the phase angle of velocity os-
cillations in the channel, Eq.(9).

3. (a) The Nyquist spectrum of pressure impedance calcu-
lated using the model [14] and Eq.(19). (b) The fre-
quency dependence of real and imaginary part of the
spectrum in (a).

4. (a) The Nyquist spectrum of pressure impedance calcu-
lated using the model [14] and Eq.(19) with zero FVO,
⟨w̃1⟩ = 0. (b) The frequency dependence of real and
imaginary part of the spectrum in (a).

5. (a) The Nyquist spectrum of pressure impedance reported
in [7]. The data are digitized from Figure 5 of [7]. (b)
The frequency dependence of real and imaginary part of
the spectrum in (a).
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