000917208 001__ 917208
000917208 005__ 20230123101922.0
000917208 0247_ $$2Handle$$a2128/33566
000917208 037__ $$aFZJ-2023-00440
000917208 041__ $$aEnglish
000917208 1001_ $$0P:(DE-Juel1)191568$$aVyas, Kunal$$b0$$eCorresponding author
000917208 1112_ $$aInternational workshop of many-body systems out of equilibrium: recent advances and future directions$$cLogar Valley$$d2022-09-19 - 2022-09-23$$wSlovenia
000917208 245__ $$aInvestigating quantum annealing strategies to solve the Fermi-Hubbard model
000917208 260__ $$c2022
000917208 3367_ $$033$$2EndNote$$aConference Paper
000917208 3367_ $$2BibTeX$$aINPROCEEDINGS
000917208 3367_ $$2DRIVER$$aconferenceObject
000917208 3367_ $$2ORCID$$aCONFERENCE_POSTER
000917208 3367_ $$2DataCite$$aOutput Types/Conference Poster
000917208 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1673604158_14308$$xOther
000917208 520__ $$aQuantum annealing can help in finding the ground state of Hamiltonians describing many body systems. One such Hamiltonian is the Fermi-Hubbard Hamiltonian. We have tried different annealing strategies to see what kind of driving Hamiltonian can be used to calculate the ground state of the Hubbard model. We present some of the strategies considered and the corresponding results. We also outline our plan to study quantum annealing for a system described by the Hubbard Hamiltonian and coupled to a bath to investigate the effect of the environmental temperature and disorder on the ideal quantum annealing process for finding the ground state.
000917208 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000917208 7001_ $$0P:(DE-Juel1)144355$$aJin, Fengping$$b1
000917208 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, Kristel$$b2
000917208 7001_ $$0P:(DE-Juel1)179169$$aDe Raedt, Hans$$b3
000917208 8564_ $$uhttps://juser.fz-juelich.de/record/917208/files/Hubbard_QA.pdf$$yOpenAccess
000917208 909CO $$ooai:juser.fz-juelich.de:917208$$pdriver$$pVDB$$popen_access$$popenaire
000917208 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191568$$aForschungszentrum Jülich$$b0$$kFZJ
000917208 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144355$$aForschungszentrum Jülich$$b1$$kFZJ
000917208 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b2$$kFZJ
000917208 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179169$$aForschungszentrum Jülich$$b3$$kFZJ
000917208 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000917208 9141_ $$y2022
000917208 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000917208 920__ $$lyes
000917208 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000917208 9801_ $$aFullTexts
000917208 980__ $$aposter
000917208 980__ $$aVDB
000917208 980__ $$aUNRESTRICTED
000917208 980__ $$aI:(DE-Juel1)JSC-20090406