000917231 001__ 917231
000917231 005__ 20230224084255.0
000917231 0247_ $$2doi$$a10.1021/acs.nanolett.2c02831
000917231 0247_ $$2ISSN$$a1530-6984
000917231 0247_ $$2ISSN$$a1530-6992
000917231 0247_ $$2Handle$$a2128/33707
000917231 0247_ $$2pmid$$a36282025
000917231 0247_ $$2WOS$$aWOS:000877564000001
000917231 037__ $$aFZJ-2023-00463
000917231 082__ $$a660
000917231 1001_ $$0P:(DE-HGF)0$$aLin, Yen-Hui$$b0
000917231 245__ $$aFabrication and Imaging Monatomic Ni Kagome Lattice on Superconducting Pb(111)
000917231 260__ $$aWashington, DC$$bACS Publ.$$c2022
000917231 3367_ $$2DRIVER$$aarticle
000917231 3367_ $$2DataCite$$aOutput Types/Journal article
000917231 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1674120237_10508
000917231 3367_ $$2BibTeX$$aARTICLE
000917231 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000917231 3367_ $$00$$2EndNote$$aJournal Article
000917231 520__ $$aArtificial fabrication of a monolayer Kagome material can offer a promising opportunity to explore exceptional quantum states and phenomena in low dimensionality. Here, we have systematically studied a monatomic Ni Kagome lattice grown on Pb(111) by scanning tunneling microscopy/spectroscopy (STM/STS) and density functional theory (DFT). Sawtooth edge structures with distinct heights due to subsurface Ni atoms have been revealed, leading to asymmetric edge scattering of surface electrons on Pb(111). In addition, a local maximum at about −0.2 eV in tunneling spectra represents a manifestation of characteristic phase-destructive flat bands. Although charge transfer from underlying Pb(111) substrate results in a vanishing magnetic moment of Ni atoms, the proximity-induced superconducting gap is slightly enhanced on the Ni Kagome lattice. In light of single-atomic-layer Ni Kagome lattice on superconducting Pb(111) substrate, it could serve as an ideal platform to investigate the interplay between Kagome physics and superconductivity down to the two-dimensional limit.
000917231 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000917231 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000917231 7001_ $$0P:(DE-HGF)0$$aChen, Chia-Ju$$b1
000917231 7001_ $$0P:(DE-HGF)0$$aKumar, Nitin$$b2
000917231 7001_ $$0P:(DE-HGF)0$$aYeh, Ta-Yu$$b3
000917231 7001_ $$0P:(DE-HGF)0$$aLin, Tzu-Hsuan$$b4
000917231 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b5
000917231 7001_ $$0P:(DE-Juel1)130545$$aBihlmayer, Gustav$$b6$$eCorresponding author
000917231 7001_ $$0P:(DE-HGF)0$$aHsu, Pin-Jui$$b7$$eCorresponding author
000917231 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/acs.nanolett.2c02831$$gVol. 22, no. 21, p. 8475 - 8481$$n21$$p8475 - 8481$$tNano letters$$v22$$x1530-6984$$y2022
000917231 8564_ $$uhttps://juser.fz-juelich.de/record/917231/files/LTNi_Pb111_main.pdf$$yOpenAccess
000917231 8564_ $$uhttps://juser.fz-juelich.de/record/917231/files/Supplement_LTNi_Pb111.pdf$$yRestricted
000917231 909CO $$ooai:juser.fz-juelich.de:917231$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000917231 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Physics, National Tsing Hua University, 300044Hsinchu, Taiwan$$b0
000917231 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Physics, National Tsing Hua University, 300044Hsinchu, Taiwan$$b1
000917231 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Physics, National Tsing Hua University, 300044Hsinchu, Taiwan$$b2
000917231 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Physics, National Tsing Hua University, 300044Hsinchu, Taiwan$$b3
000917231 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aDepartment of Physics, National Tsing Hua University, 300044Hsinchu, Taiwan$$b4
000917231 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b5$$kFZJ
000917231 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130545$$aForschungszentrum Jülich$$b6$$kFZJ
000917231 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Physics, National Tsing Hua University, 300044Hsinchu, Taiwan$$b7
000917231 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Center for Quantum Technology, National Tsing Hua University, Hsinchu300044, Taiwan$$b7
000917231 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000917231 9141_ $$y2022
000917231 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-30
000917231 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-30
000917231 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-30
000917231 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-30
000917231 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNANO LETT : 2021$$d2022-11-30
000917231 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-30
000917231 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-30
000917231 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000917231 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-30
000917231 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO LETT : 2021$$d2022-11-30
000917231 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-30
000917231 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-30
000917231 920__ $$lyes
000917231 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
000917231 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x1
000917231 980__ $$ajournal
000917231 980__ $$aVDB
000917231 980__ $$aUNRESTRICTED
000917231 980__ $$aI:(DE-Juel1)PGI-1-20110106
000917231 980__ $$aI:(DE-Juel1)IAS-1-20090406
000917231 9801_ $$aFullTexts