001     917231
005     20230224084255.0
024 7 _ |a 10.1021/acs.nanolett.2c02831
|2 doi
024 7 _ |a 1530-6984
|2 ISSN
024 7 _ |a 1530-6992
|2 ISSN
024 7 _ |a 2128/33707
|2 Handle
024 7 _ |a 36282025
|2 pmid
024 7 _ |a WOS:000877564000001
|2 WOS
037 _ _ |a FZJ-2023-00463
082 _ _ |a 660
100 1 _ |a Lin, Yen-Hui
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Fabrication and Imaging Monatomic Ni Kagome Lattice on Superconducting Pb(111)
260 _ _ |a Washington, DC
|c 2022
|b ACS Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1674120237_10508
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Artificial fabrication of a monolayer Kagome material can offer a promising opportunity to explore exceptional quantum states and phenomena in low dimensionality. Here, we have systematically studied a monatomic Ni Kagome lattice grown on Pb(111) by scanning tunneling microscopy/spectroscopy (STM/STS) and density functional theory (DFT). Sawtooth edge structures with distinct heights due to subsurface Ni atoms have been revealed, leading to asymmetric edge scattering of surface electrons on Pb(111). In addition, a local maximum at about −0.2 eV in tunneling spectra represents a manifestation of characteristic phase-destructive flat bands. Although charge transfer from underlying Pb(111) substrate results in a vanishing magnetic moment of Ni atoms, the proximity-induced superconducting gap is slightly enhanced on the Ni Kagome lattice. In light of single-atomic-layer Ni Kagome lattice on superconducting Pb(111) substrate, it could serve as an ideal platform to investigate the interplay between Kagome physics and superconductivity down to the two-dimensional limit.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Chen, Chia-Ju
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kumar, Nitin
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Yeh, Ta-Yu
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Lin, Tzu-Hsuan
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Blügel, Stefan
|0 P:(DE-Juel1)130548
|b 5
700 1 _ |a Bihlmayer, Gustav
|0 P:(DE-Juel1)130545
|b 6
|e Corresponding author
700 1 _ |a Hsu, Pin-Jui
|0 P:(DE-HGF)0
|b 7
|e Corresponding author
773 _ _ |a 10.1021/acs.nanolett.2c02831
|g Vol. 22, no. 21, p. 8475 - 8481
|0 PERI:(DE-600)2048866-X
|n 21
|p 8475 - 8481
|t Nano letters
|v 22
|y 2022
|x 1530-6984
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/917231/files/LTNi_Pb111_main.pdf
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/917231/files/Supplement_LTNi_Pb111.pdf
909 C O |o oai:juser.fz-juelich.de:917231
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Department of Physics, National Tsing Hua University, 300044Hsinchu, Taiwan
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Department of Physics, National Tsing Hua University, 300044Hsinchu, Taiwan
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Department of Physics, National Tsing Hua University, 300044Hsinchu, Taiwan
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Department of Physics, National Tsing Hua University, 300044Hsinchu, Taiwan
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Department of Physics, National Tsing Hua University, 300044Hsinchu, Taiwan
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130548
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130545
910 1 _ |a Department of Physics, National Tsing Hua University, 300044Hsinchu, Taiwan
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-HGF)0
910 1 _ |a Center for Quantum Technology, National Tsing Hua University, Hsinchu300044, Taiwan
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-30
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NANO LETT : 2021
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-30
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NANO LETT : 2021
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-30
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21