000917281 001__ 917281
000917281 005__ 20230224084251.0
000917281 0247_ $$2doi$$a10.3389/frwa.2022.981745
000917281 0247_ $$2Handle$$a2128/33546
000917281 0247_ $$2WOS$$aWOS:000862463100001
000917281 037__ $$aFZJ-2023-00511
000917281 082__ $$a333.7
000917281 1001_ $$0P:(DE-HGF)0$$aDe Lannoy, Gabriëlle J. M.$$b0$$eCorresponding author
000917281 245__ $$aPerspective on satellite-based land data assimilation to estimate water cycle components in an era of advanced data availability and model sophistication
000917281 260__ $$aLausanne$$bFrontiers Media$$c2022
000917281 3367_ $$2DRIVER$$aarticle
000917281 3367_ $$2DataCite$$aOutput Types/Journal article
000917281 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1673596723_16664
000917281 3367_ $$2BibTeX$$aARTICLE
000917281 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000917281 3367_ $$00$$2EndNote$$aJournal Article
000917281 520__ $$aThe beginning of the 21st century is marked by a rapid growth of land surface satellite data and model sophistication. This offers new opportunities to estimate multiple components of the water cycle via satellite-based land data assimilation (DA) across multiple scales. By resolving more processes in land surface models and by coupling the land, the atmosphere, and other Earth system compartments, the observed information can be propagated to constrain additional unobserved variables. Furthermore, access to more satellite observations enables the direct constraint of more and more components of the water cycle that are of interest to end users. However, the finer level of detail in models and data is also often accompanied by an increase in dimensions, with more state variables, parameters, or boundary conditions to estimate, and more observations to assimilate. This requires advanced DA methods and efficient solutions. One solution is to target specific observations for assimilation based on a sensitivity study or coupling strength analysis, because not all observations are equally effective in improving subsequent forecasts of hydrological variables, weather, agricultural production, or hazards through DA. This paper offers a perspective on current and future land DA development, and suggestions to optimally exploit advances in observing and modeling systems.
000917281 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000917281 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000917281 7001_ $$0P:(DE-Juel1)129436$$aBechtold, Michel$$b1
000917281 7001_ $$0P:(DE-HGF)0$$aAlbergel, Clément$$b2
000917281 7001_ $$0P:(DE-HGF)0$$aBrocca, Luca$$b3
000917281 7001_ $$0P:(DE-HGF)0$$aCalvet, Jean-Christophe$$b4
000917281 7001_ $$0P:(DE-HGF)0$$aCarrassi, Alberto$$b5
000917281 7001_ $$0P:(DE-HGF)0$$aCrow, Wade T.$$b6
000917281 7001_ $$0P:(DE-HGF)0$$ade Rosnay, Patricia$$b7
000917281 7001_ $$0P:(DE-HGF)0$$aDurand, Michael$$b8
000917281 7001_ $$0P:(DE-HGF)0$$aForman, Barton$$b9
000917281 7001_ $$0P:(DE-HGF)0$$aGeppert, Gernot$$b10
000917281 7001_ $$0P:(DE-HGF)0$$aGirotto, Manuela$$b11
000917281 7001_ $$0P:(DE-Juel1)138662$$aHendricks-Franssen, Harrie-Jan$$b12
000917281 7001_ $$0P:(DE-HGF)0$$aJonas, Tobias$$b13
000917281 7001_ $$0P:(DE-HGF)0$$aKumar, Sujay$$b14
000917281 7001_ $$0P:(DE-HGF)0$$aLievens, Hans$$b15
000917281 7001_ $$0P:(DE-HGF)0$$aLu, Yang$$b16
000917281 7001_ $$0P:(DE-HGF)0$$aMassari, Christian$$b17
000917281 7001_ $$0P:(DE-HGF)0$$aPauwels, Valentijn R. N.$$b18
000917281 7001_ $$0P:(DE-HGF)0$$aReichle, Rolf H.$$b19
000917281 7001_ $$0P:(DE-HGF)0$$aSteele-Dunne, Susan$$b20
000917281 773__ $$0PERI:(DE-600)2986721-6$$a10.3389/frwa.2022.981745$$gVol. 4, p. 981745$$p981745$$tFrontiers in water$$v4$$x2624-9375$$y2022
000917281 8564_ $$uhttps://juser.fz-juelich.de/record/917281/files/frwa-04-981745.pdf$$yOpenAccess
000917281 909CO $$ooai:juser.fz-juelich.de:917281$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000917281 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138662$$aForschungszentrum Jülich$$b12$$kFZJ
000917281 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000917281 9141_ $$y2022
000917281 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000917281 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000917281 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-09
000917281 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-09
000917281 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-03T10:51:43Z
000917281 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-03T10:51:43Z
000917281 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-05-03T10:51:43Z
000917281 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-09
000917281 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2022-11-09
000917281 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-09
000917281 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-09
000917281 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2022-11-09
000917281 920__ $$lyes
000917281 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000917281 980__ $$ajournal
000917281 980__ $$aVDB
000917281 980__ $$aUNRESTRICTED
000917281 980__ $$aI:(DE-Juel1)IBG-3-20101118
000917281 9801_ $$aFullTexts