001     917281
005     20230224084251.0
024 7 _ |a 10.3389/frwa.2022.981745
|2 doi
024 7 _ |a 2128/33546
|2 Handle
024 7 _ |a WOS:000862463100001
|2 WOS
037 _ _ |a FZJ-2023-00511
082 _ _ |a 333.7
100 1 _ |a De Lannoy, Gabriëlle J. M.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Perspective on satellite-based land data assimilation to estimate water cycle components in an era of advanced data availability and model sophistication
260 _ _ |a Lausanne
|c 2022
|b Frontiers Media
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1673596723_16664
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The beginning of the 21st century is marked by a rapid growth of land surface satellite data and model sophistication. This offers new opportunities to estimate multiple components of the water cycle via satellite-based land data assimilation (DA) across multiple scales. By resolving more processes in land surface models and by coupling the land, the atmosphere, and other Earth system compartments, the observed information can be propagated to constrain additional unobserved variables. Furthermore, access to more satellite observations enables the direct constraint of more and more components of the water cycle that are of interest to end users. However, the finer level of detail in models and data is also often accompanied by an increase in dimensions, with more state variables, parameters, or boundary conditions to estimate, and more observations to assimilate. This requires advanced DA methods and efficient solutions. One solution is to target specific observations for assimilation based on a sensitivity study or coupling strength analysis, because not all observations are equally effective in improving subsequent forecasts of hydrological variables, weather, agricultural production, or hazards through DA. This paper offers a perspective on current and future land DA development, and suggestions to optimally exploit advances in observing and modeling systems.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Bechtold, Michel
|0 P:(DE-Juel1)129436
|b 1
700 1 _ |a Albergel, Clément
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Brocca, Luca
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Calvet, Jean-Christophe
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Carrassi, Alberto
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Crow, Wade T.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a de Rosnay, Patricia
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Durand, Michael
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Forman, Barton
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Geppert, Gernot
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Girotto, Manuela
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Hendricks-Franssen, Harrie-Jan
|0 P:(DE-Juel1)138662
|b 12
700 1 _ |a Jonas, Tobias
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Kumar, Sujay
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Lievens, Hans
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Lu, Yang
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Massari, Christian
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Pauwels, Valentijn R. N.
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Reichle, Rolf H.
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Steele-Dunne, Susan
|0 P:(DE-HGF)0
|b 20
773 _ _ |a 10.3389/frwa.2022.981745
|g Vol. 4, p. 981745
|0 PERI:(DE-600)2986721-6
|p 981745
|t Frontiers in water
|v 4
|y 2022
|x 2624-9375
856 4 _ |u https://juser.fz-juelich.de/record/917281/files/frwa-04-981745.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:917281
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)138662
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2022
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-05-03T10:51:43Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-05-03T10:51:43Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-05-03T10:51:43Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-09
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2022-11-09
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21