000917288 001__ 917288
000917288 005__ 20230224084254.0
000917288 0247_ $$2doi$$a10.1016/j.jaap.2022.105693
000917288 0247_ $$2ISSN$$a0165-2370
000917288 0247_ $$2ISSN$$a1873-250X
000917288 0247_ $$2Handle$$a2128/33556
000917288 0247_ $$2WOS$$aWOS:000861803700003
000917288 037__ $$aFZJ-2023-00518
000917288 082__ $$a660
000917288 1001_ $$0P:(DE-HGF)0$$aAl-Rabaiai, Ahmed$$b0
000917288 245__ $$aCustomized biochar for soil applications in arid land: Effect of feedstock type and pyrolysis temperature on soil microbial enumeration and respiration
000917288 260__ $$aNew York, NY [u.a.]$$bScience Direct$$c2022
000917288 3367_ $$2DRIVER$$aarticle
000917288 3367_ $$2DataCite$$aOutput Types/Journal article
000917288 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1673602034_32709
000917288 3367_ $$2BibTeX$$aARTICLE
000917288 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000917288 3367_ $$00$$2EndNote$$aJournal Article
000917288 520__ $$aBiochar is rapidly gaining worldwide interest as an agro-technology for increasing soil health and carbon storage. This study investigated the physicochemical characteristics and impact on soil microbes of biochar amendments from three feedstock sources: date palm leaves (D), mesquite plants (M) and sludge compost (S.C.); pyrolyzed at 450 ℃, 600 ℃ and 750 ℃. Scanning electron microscopy images showed an apparent pore size increase with increasing pyrolysis temperature. The increase in pyrolysis temperature decreased O-H and C-O bonds and increased the proportion of C-C bonds, as obtained from the Fourier transform infrared spectroscopy studies. Thermostability was highest at a pyrolysis temperature of 750 ℃, with distinct thermal decomposition profiles for each of the three feedstock materials used, as indicated by the dynamic thermal gravimetric analysis. The SC biochars showed the highest mineral content (45–66%) with significantly higher water-soluble and total concentrations of mineral elements. The SC samples also showed the presence of possible soil contaminants such as Pb and As, and its use as a soil amendment is not recommended, even though the SC at 450 ℃ was the only nonalkaline biochar in this study. The M feedstock produced biochar with the highest surface area (600 m2 g−1) and carbon content based on loss on ignition (94.98%); nevertheless, the M biochar reduced soil microbial enumeration and respiration. This reduction increased with increasing pyrolysis temperature. Therefore, the M biochar feedstocks are not recommended for improving soil health and may be tested in the future as a microbial inhibitor for soil-borne plant pathogens. Considering the physicochemical properties and the biochar impact on soil, D at 600 ℃ was the best biochar selected for further studies as a soil amendment. The large differences in biochar physicochemical properties and their effect on soil microbes observed in this study suggest that the feedstock type and pyrolysis temperatures must be considered during biochar amendment production for improving soil health in arid-land agroecosystems.
000917288 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000917288 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000917288 7001_ $$0P:(DE-HGF)0$$aMenezes-Blackburn, Daniel$$b1$$eCorresponding author
000917288 7001_ $$0P:(DE-HGF)0$$aAl-Ismaily, Said$$b2
000917288 7001_ $$0P:(DE-HGF)0$$aJanke, Rhonda$$b3
000917288 7001_ $$0P:(DE-HGF)0$$aPracejus, Bernhard$$b4
000917288 7001_ $$0P:(DE-HGF)0$$aAl-Alawi, Ahmed$$b5
000917288 7001_ $$0P:(DE-HGF)0$$aAl-Kindi, Mohamed$$b6
000917288 7001_ $$0P:(DE-Juel1)145865$$aBol, Roland$$b7
000917288 773__ $$0PERI:(DE-600)1484647-0$$a10.1016/j.jaap.2022.105693$$gVol. 168, p. 105693 -$$p105693 -$$tJournal of analytical and applied pyrolysis$$v168$$x0165-2370$$y2022
000917288 8564_ $$uhttps://juser.fz-juelich.de/record/917288/files/postprintAlrabaiaietal.pdf$$yOpenAccess
000917288 909CO $$ooai:juser.fz-juelich.de:917288$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000917288 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145865$$aForschungszentrum Jülich$$b7$$kFZJ
000917288 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000917288 9141_ $$y2022
000917288 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-17
000917288 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-17
000917288 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-17
000917288 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-17
000917288 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-17
000917288 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ ANAL APPL PYROL : 2021$$d2022-11-17
000917288 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-17
000917288 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000917288 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-17
000917288 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ANAL APPL PYROL : 2021$$d2022-11-17
000917288 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-17
000917288 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-17
000917288 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-17$$wger
000917288 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-17
000917288 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000917288 9801_ $$aFullTexts
000917288 980__ $$ajournal
000917288 980__ $$aVDB
000917288 980__ $$aUNRESTRICTED
000917288 980__ $$aI:(DE-Juel1)IBG-3-20101118