000917315 001__ 917315
000917315 005__ 20230123101925.0
000917315 0247_ $$2Handle$$a2128/33536
000917315 037__ $$aFZJ-2023-00543
000917315 041__ $$aEnglish
000917315 1001_ $$0P:(DE-Juel1)176997$$aMehta, Vrinda$$b0$$ufzj
000917315 1112_ $$a11th NIC Symposium$$cJülich$$d2022-09-29 - 2022-09-30$$wGermany
000917315 245__ $$aOn the hardness of quadratic unconstrained binary optimization problems
000917315 260__ $$c2022
000917315 3367_ $$033$$2EndNote$$aConference Paper
000917315 3367_ $$2BibTeX$$aINPROCEEDINGS
000917315 3367_ $$2DRIVER$$aconferenceObject
000917315 3367_ $$2ORCID$$aCONFERENCE_POSTER
000917315 3367_ $$2DataCite$$aOutput Types/Conference Poster
000917315 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1673537303_27089$$xOther
000917315 502__ $$cRWTH Aachen University
000917315 520__ $$aWe use exact enumeration to characterize the solutions of quadratic unconstrained binary optimization problems of less than 21 variables in terms of their distributions of Hamming distances to close-by solutions. We also perform experiments with the D-Wave Advantage 5.1 quantum annealer, solving many instances of up to 170-variable, quadratic unconstrained binary optimization problems. Our results demonstrate that the exponents characterizing the success probability of a D-Wave annealer to solve a QUBO correlate very well with the predictions based on the Hamming distance distributions computed for small problem instances.
000917315 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000917315 7001_ $$0P:(DE-Juel1)144355$$aJin, Fengping$$b1$$ufzj
000917315 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, Kristel$$b2$$eCorresponding author$$ufzj
000917315 7001_ $$0P:(DE-Juel1)179169$$aDe Raedt, Hans$$b3$$ufzj
000917315 8564_ $$uhttps://juser.fz-juelich.de/record/917315/files/QUBO_V.pdf$$yOpenAccess
000917315 909CO $$ooai:juser.fz-juelich.de:917315$$pdriver$$pVDB$$popen_access$$popenaire
000917315 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176997$$aForschungszentrum Jülich$$b0$$kFZJ
000917315 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144355$$aForschungszentrum Jülich$$b1$$kFZJ
000917315 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b2$$kFZJ
000917315 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179169$$aForschungszentrum Jülich$$b3$$kFZJ
000917315 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000917315 9141_ $$y2022
000917315 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000917315 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000917315 9801_ $$aFullTexts
000917315 980__ $$aposter
000917315 980__ $$aVDB
000917315 980__ $$aUNRESTRICTED
000917315 980__ $$aI:(DE-Juel1)JSC-20090406