000917322 001__ 917322 000917322 005__ 20231027114352.0 000917322 0247_ $$2doi$$a10.1557/s43578-022-00880-z 000917322 0247_ $$2ISSN$$a1092-8928 000917322 0247_ $$2ISSN$$a0884-2914 000917322 0247_ $$2ISSN$$a0884-1616 000917322 0247_ $$2ISSN$$a2044-5326 000917322 0247_ $$2Handle$$a2128/34245 000917322 0247_ $$2WOS$$aWOS:000911279200005 000917322 037__ $$aFZJ-2023-00550 000917322 082__ $$a670 000917322 1001_ $$0P:(DE-Juel1)187067$$aNguyen, Binh Duong$$b0$$eCorresponding author 000917322 245__ $$aAutomated analysis of X-ray topography of 4H-SiC wafers: Image analysis, numerical computations, and artificial intelligence approaches for locating and characterizing screw dislocations 000917322 260__ $$aBerlin$$bSpringer$$c2023 000917322 3367_ $$2DRIVER$$aarticle 000917322 3367_ $$2DataCite$$aOutput Types/Journal article 000917322 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1680523481_8420 000917322 3367_ $$2BibTeX$$aARTICLE 000917322 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000917322 3367_ $$00$$2EndNote$$aJournal Article 000917322 520__ $$aThe physical vapor transport (PVT) crystal growth process of 4H-SiC wafers is typically accompanied by the occurrence of a large variety of defect types such as screw or edge dislocations, and basal plane dislocations. In particular, screw dislocations may have a strong negative influence on the performance of electronic devices due to the large, distorted or even hollow core of such dislocations. Therefore, analyzing and understanding these types of defects is crucial also for the production of high-quality semiconductor materials. This work uses automated image analysis to provide dislocation information for computing the stresses and strain energy of the wafer. Together with using a genetic algorithm this allows us to predict the dislocation positions, the Burgers vector magnitudes, and the most likely configuration of Burgers vector signs for the dislocations in the wafer. 000917322 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0 000917322 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000917322 7001_ $$0P:(DE-HGF)0$$aRoder, Melissa$$b1 000917322 7001_ $$0P:(DE-HGF)0$$aDanilewsky, Andreas$$b2 000917322 7001_ $$0P:(DE-HGF)0$$aSteiner, Johannes$$b3 000917322 7001_ $$0P:(DE-HGF)0$$aWellmann, Peter$$b4 000917322 7001_ $$0P:(DE-Juel1)186075$$aSandfeld, Stefan$$b5$$ufzj 000917322 773__ $$0PERI:(DE-600)2015297-8$$a10.1557/s43578-022-00880-z$$p1254-1265$$tJournal of materials research$$v38$$x1092-8928$$y2023 000917322 8564_ $$uhttps://juser.fz-juelich.de/record/917322/files/1_image_analysis_JMR_revised.pdf$$yOpenAccess 000917322 8564_ $$uhttps://juser.fz-juelich.de/record/917322/files/s43578-022-00880-z.pdf$$yOpenAccess 000917322 8767_ $$d2023-09-08$$eHybrid-OA$$jDEAL 000917322 909CO $$ooai:juser.fz-juelich.de:917322$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire 000917322 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187067$$aForschungszentrum Jülich$$b0$$kFZJ 000917322 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186075$$aForschungszentrum Jülich$$b5$$kFZJ 000917322 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0 000917322 9141_ $$y2023 000917322 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set 000917322 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding 000917322 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten 000917322 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020 000917322 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2022-11-30 000917322 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000917322 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-30 000917322 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2022-11-30$$wger 000917322 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000917322 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-30 000917322 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-22$$wger 000917322 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER RES : 2022$$d2023-10-22 000917322 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-22 000917322 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-22 000917322 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-22 000917322 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-22 000917322 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-22 000917322 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-22 000917322 920__ $$lyes 000917322 9201_ $$0I:(DE-Juel1)IAS-9-20201008$$kIAS-9$$lMaterials Data Science and Informatics$$x0 000917322 9801_ $$aFullTexts 000917322 980__ $$ajournal 000917322 980__ $$aVDB 000917322 980__ $$aUNRESTRICTED 000917322 980__ $$aI:(DE-Juel1)IAS-9-20201008 000917322 980__ $$aAPC