001     917322
005     20231027114352.0
024 7 _ |a 10.1557/s43578-022-00880-z
|2 doi
024 7 _ |a 1092-8928
|2 ISSN
024 7 _ |a 0884-2914
|2 ISSN
024 7 _ |a 0884-1616
|2 ISSN
024 7 _ |a 2044-5326
|2 ISSN
024 7 _ |a 2128/34245
|2 Handle
024 7 _ |a WOS:000911279200005
|2 WOS
037 _ _ |a FZJ-2023-00550
082 _ _ |a 670
100 1 _ |a Nguyen, Binh Duong
|0 P:(DE-Juel1)187067
|b 0
|e Corresponding author
245 _ _ |a Automated analysis of X-ray topography of 4H-SiC wafers: Image analysis, numerical computations, and artificial intelligence approaches for locating and characterizing screw dislocations
260 _ _ |a Berlin
|c 2023
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1680523481_8420
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The physical vapor transport (PVT) crystal growth process of 4H-SiC wafers is typically accompanied by the occurrence of a large variety of defect types such as screw or edge dislocations, and basal plane dislocations. In particular, screw dislocations may have a strong negative influence on the performance of electronic devices due to the large, distorted or even hollow core of such dislocations. Therefore, analyzing and understanding these types of defects is crucial also for the production of high-quality semiconductor materials. This work uses automated image analysis to provide dislocation information for computing the stresses and strain energy of the wafer. Together with using a genetic algorithm this allows us to predict the dislocation positions, the Burgers vector magnitudes, and the most likely configuration of Burgers vector signs for the dislocations in the wafer.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Roder, Melissa
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Danilewsky, Andreas
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Steiner, Johannes
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Wellmann, Peter
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Sandfeld, Stefan
|0 P:(DE-Juel1)186075
|b 5
|u fzj
773 _ _ |a 10.1557/s43578-022-00880-z
|0 PERI:(DE-600)2015297-8
|p 1254-1265
|t Journal of materials research
|v 38
|y 2023
|x 1092-8928
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/917322/files/1_image_analysis_JMR_revised.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/917322/files/s43578-022-00880-z.pdf
909 C O |o oai:juser.fz-juelich.de:917322
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)187067
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)186075
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Springer Nature 2020
|2 APC
|0 PC:(DE-HGF)0113
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2022-11-30
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-30
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2022-11-30
|w ger
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-30
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-22
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MATER RES : 2022
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-22
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-22
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-9-20201008
|k IAS-9
|l Materials Data Science and Informatics
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-9-20201008
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21