001     917333
005     20230224084256.0
024 7 _ |a 10.1021/acschemneuro.2c00102
|2 doi
024 7 _ |a 35580288
|2 pmid
024 7 _ |a WOS:000819923000001
|2 WOS
037 _ _ |a FZJ-2023-00561
082 _ _ |a 540
100 1 _ |a Leguizamon Herrera, Vivian Lorena
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Interaction of Therapeutic d -Peptides with Aβ42 Monomers, Thermodynamics, and Binding Analysis
260 _ _ |a Washington, DC
|c 2022
|b ACS Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1673536152_11434
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The aggregation of the amyloid-β (Aβ) peptide is a major hallmark of Alzheimer’s disease. This peptide can aggregate into oligomers, proto-fibrils, and mature fibrils, which eventually assemble into amyloid plaques. The peptide monomers are the smallest assembly units and play an important role in most of the individual processes involved in amyloid fibril formation, such as primary and secondary nucleation and elongation. Several d-peptides have been confirmed as promising candidates to inhibit the aggregation of Aβ into toxic oligomers and fibrils by specifically interacting with monomeric species. In this work, we elucidate the structural interaction and thermodynamics of binding between three d-peptides (D3, ANK6, and RD2) and Aβ42 monomers by means of enhanced molecular dynamics simulations. Our study derives thermodynamic energies in good agreement with experimental values and suggests that there is an enhanced binding for D3 and ANK6, which leads to more stable complexes than for RD2. The binding of D3 to Aβ42 is shown to be weakly exothermic and mainly entropically driven, whereas the complex formation between the ANK6 and RD2 with the Aβ42 free monomer is weakly endothermic. In addition, the changes in the solvent-accessible surface area and the radius of gyration support that the binding between Aβ42 and d-peptides is mainly driven by electrostatic and hydrophobic interactions and leads to more compact conformations.
536 _ _ |a 5244 - Information Processing in Neuronal Networks (POF4-524)
|0 G:(DE-HGF)POF4-5244
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Buell, Alexander K.
|0 0000-0003-1161-3622
|b 1
700 1 _ |a Willbold, Dieter
|0 P:(DE-Juel1)132029
|b 2
|e Corresponding author
700 1 _ |a Barz, Bogdan
|0 P:(DE-Juel1)151182
|b 3
773 _ _ |a 10.1021/acschemneuro.2c00102
|g Vol. 13, no. 11, p. 1638 - 1650
|0 PERI:(DE-600)2528493-9
|n 11
|p 1638 - 1650
|t ACS chemical neuroscience
|v 13
|y 2022
|x 1948-7193
856 4 _ |u https://juser.fz-juelich.de/record/917333/files/acschemneuro.2c00102-1.pdf
909 C O |o oai:juser.fz-juelich.de:917333
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132029
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5244
|x 0
914 1 _ |y 2022
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS CHEM NEUROSCI : 2021
|d 2022-11-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-24
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-24
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS CHEM NEUROSCI : 2021
|d 2022-11-24
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-7-20200312
|k IBI-7
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBI-7-20200312
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21