000917350 001__ 917350 000917350 005__ 20230224084249.0 000917350 0247_ $$2doi$$a10.1103/PhysRevB.106.214522 000917350 0247_ $$2ISSN$$a2469-9950 000917350 0247_ $$2ISSN$$a2469-9977 000917350 0247_ $$2ISSN$$a0163-1829 000917350 0247_ $$2ISSN$$a0556-2805 000917350 0247_ $$2ISSN$$a1095-3795 000917350 0247_ $$2ISSN$$a1098-0121 000917350 0247_ $$2ISSN$$a1538-4489 000917350 0247_ $$2ISSN$$a1550-235X 000917350 0247_ $$2ISSN$$a2469-9969 000917350 0247_ $$2Handle$$a2128/33550 000917350 0247_ $$2WOS$$aWOS:000905283000005 000917350 037__ $$aFZJ-2023-00578 000917350 082__ $$a530 000917350 1001_ $$0P:(DE-HGF)0$$aHu, Die$$b0 000917350 245__ $$aLow-energy spin fluctuations in FeSe 0.95 S 0.05 000917350 260__ $$aWoodbury, NY$$bInst.$$c2022 000917350 3367_ $$2DRIVER$$aarticle 000917350 3367_ $$2DataCite$$aOutput Types/Journal article 000917350 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1676895826_22984 000917350 3367_ $$2BibTeX$$aARTICLE 000917350 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000917350 3367_ $$00$$2EndNote$$aJournal Article 000917350 520__ $$aWe report inelastic neutron scattering measurements of low-energy spin fluctuations in FeSe0.95S0.05 (Tc=10 K). Our experiments revealed a resonance mode at 3.5 meV, accompanied by a spin gap below 3 meV at the stripe wave vector in the superconducting state. The resonance mode is sharp in energy and appears at an energy level considerably lower than the superconducting gap, implying that the mode is a bound spin exciton below the superconducting gap rather than an enhanced paramagnon. An abrupt enhancement of stripe spin fluctuations is found below a nematic ordering temperature of Ts=80 K. These results indicate that the direct coupling between the stripe spin fluctuations, nematicity, and superconductivity persists in sulfur doped FeSe, where superconductivity is enhanced and nematicity is partially suppressed. 000917350 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0 000917350 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x1 000917350 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000917350 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0 000917350 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x1 000917350 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x0 000917350 693__ $$0EXP:(DE-MLZ)PANDA-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)PANDA-20140101$$6EXP:(DE-MLZ)SR2-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$ePANDA: Cold three axes spectrometer$$fSR2$$x0 000917350 7001_ $$00000-0002-8741-7559$$aWang, Qisi$$b1$$eCorresponding author 000917350 7001_ $$0P:(DE-HGF)0$$aWo, Hongliang$$b2 000917350 7001_ $$0P:(DE-Juel1)156579$$aSchneidewind, Astrid$$b3 000917350 7001_ $$0P:(DE-HGF)0$$aZhao, Jun$$b4$$eCorresponding author 000917350 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.106.214522$$gVol. 106, no. 21, p. 214522$$n21$$p214522$$tPhysical review / B$$v106$$x2469-9950$$y2022 000917350 8564_ $$uhttps://juser.fz-juelich.de/record/917350/files/Low-energy%20spin%20fluctuations%20in%20FeSe0.95S0.05.pdf$$yOpenAccess 000917350 909CO $$ooai:juser.fz-juelich.de:917350$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire 000917350 9101_ $$0I:(DE-HGF)0$$60000-0002-8741-7559$$aExternal Institute$$b1$$kExtern 000917350 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156579$$aForschungszentrum Jülich$$b3$$kFZJ 000917350 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0 000917350 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x1 000917350 9141_ $$y2022 000917350 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11 000917350 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-11 000917350 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2022-11-11 000917350 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-11 000917350 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-11 000917350 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11 000917350 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-11 000917350 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-11 000917350 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000917350 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-11 000917350 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2021$$d2022-11-11 000917350 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11 000917350 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11 000917350 920__ $$lyes 000917350 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0 000917350 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x1 000917350 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x2 000917350 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x3 000917350 980__ $$ajournal 000917350 980__ $$aVDB 000917350 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218 000917350 980__ $$aI:(DE-588b)4597118-3 000917350 980__ $$aI:(DE-Juel1)JCNS-2-20110106 000917350 980__ $$aI:(DE-Juel1)JCNS-4-20201012 000917350 980__ $$aUNRESTRICTED 000917350 9801_ $$aFullTexts